BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20625124)

  • 1. Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia.
    Corbacioglu A; Scholl C; Schlenk RF; Eiwen K; Du J; Bullinger L; Fröhling S; Reimer P; Rummel M; Derigs HG; Nachbaur D; Krauter J; Ganser A; Döhner H; Döhner K
    J Clin Oncol; 2010 Aug; 28(23):3724-9. PubMed ID: 20625124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study.
    Cilloni D; Renneville A; Hermitte F; Hills RK; Daly S; Jovanovic JV; Gottardi E; Fava M; Schnittger S; Weiss T; Izzo B; Nomdedeu J; van der Heijden A; van der Reijden BA; Jansen JH; van der Velden VH; Ommen H; Preudhomme C; Saglio G; Grimwade D
    J Clin Oncol; 2009 Nov; 27(31):5195-201. PubMed ID: 19752335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias.
    Krauter J; Gorlich K; Ottmann O; Lubbert M; Dohner H; Heit W; Kanz L; Ganser A; Heil G
    J Clin Oncol; 2003 Dec; 21(23):4413-22. PubMed ID: 14645432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of a novel CBFB/MYH11 variant fusion transcript (K-type) showing partial insertion of exon 6 of CBFB gene using two commercially available multiplex RT-PCR kits.
    Park TS; Lee ST; Song J; Lee KA; Lee JH; Kim J; Lee HJ; Han JH; Kim JK; Cho SR; Choi JR
    Cancer Genet Cytogenet; 2009 Mar; 189(2):87-92. PubMed ID: 19215788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and treatment of molecular relapse in acute myeloid leukemia with RUNX1 (AML1), CBFB, or MLL gene translocations: frequent quantitative monitoring of molecular markers in different compartments and correlation with WT1 gene expression.
    Doubek M; Palasek I; Pospisil Z; Borsky M; Klabusay M; Brychtova Y; Jurcek T; Jeziskova I; Krejci M; Dvorakova D; Mayer J
    Exp Hematol; 2009 Jun; 37(6):659-72. PubMed ID: 19463768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevance of presenting white blood cell count and kinetics of molecular remission in the prognosis of acute myeloid leukemia with CBFbeta/MYH11 rearrangement.
    Martín G; Barragán E; Bolufer P; Chillón C; García-Sanz R; Gómez T; Brunet S; González M; Sanz MA
    Haematologica; 2000 Jul; 85(7):699-703. PubMed ID: 10897121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of CBFbeta/MYH11 fusion transcripts in patients with inv(16) acute myeloid leukemia after allogeneic bone marrow or peripheral blood progenitor cell transplantation.
    Elmaagacli AH; Beelen DW; Kroll M; Trzensky S; Stein C; Schaefer UW
    Bone Marrow Transplant; 1998 Jan; 21(2):159-66. PubMed ID: 9489633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prognostic value of MLL-AF9 detection in patients with t(9;11)(p22;q23)-positive acute myeloid leukemia.
    Scholl C; Schlenk RF; Eiwen K; Döhner H; Fröhling S; Döhner K;
    Haematologica; 2005 Dec; 90(12):1626-34. PubMed ID: 16330435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy-related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: a study on 162 patients.
    Schnittger S; Bacher U; Haferlach C; Kern W; Haferlach T
    Leukemia; 2007 Apr; 21(4):725-31. PubMed ID: 17287858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of minimal residual disease by polymerase chain reaction in B cell malignancies.
    Moos M; Schulz R; Cremer F; Sucker C; Schmohl D; Döhner H; Goldschmidt H; Haas R; Hunstein W
    Stem Cells; 1995 Dec; 13 Suppl 3():42-51. PubMed ID: 8747988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts.
    Guerrasio A; Pilatrino C; De Micheli D; Cilloni D; Serra A; Gottardi E; Parziale A; Marmont F; Diverio D; Divona M; Lo Coco F; Saglio G
    Leukemia; 2002 Jun; 16(6):1176-81. PubMed ID: 12040450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The loss or absence of minimal residual disease of <0·1% at any time after two cycles of consolidation chemotherapy in CBFB-MYH11-positive acute myeloid leukaemia indicates poor prognosis.
    Duan W; Liu X; Jia J; Wang J; Gong L; Jiang Q; Zhao T; Wang Y; Zhang X; Xu L; Zhao X; Qin Y; Shi H; Chang Y; Huang X; Jiang H
    Br J Haematol; 2021 Jan; 192(2):265-271. PubMed ID: 32588434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia.
    Candoni A; Toffoletti E; Gallina R; Simeone E; Chiozzotto M; Volpetti S; Fanin R
    Clin Transplant; 2011; 25(2):308-16. PubMed ID: 20412098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial.
    Yin JA; O'Brien MA; Hills RK; Daly SB; Wheatley K; Burnett AK
    Blood; 2012 Oct; 120(14):2826-35. PubMed ID: 22875911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations.
    Dvorakova D; Racil Z; Jeziskova I; Palasek I; Protivankova M; Lengerova M; Razga F; Mayer J
    Am J Hematol; 2010 Dec; 85(12):926-9. PubMed ID: 20981679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease.
    Qin Y; Zhu H; Jiang B; Li J; Lu X; Li L; Ruan G; Liu Y; Chen S; Huang X
    Leuk Res; 2009 Mar; 33(3):384-90. PubMed ID: 18950857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative real-time RT-PCR monitoring of BCR-ABL in chronic myelogenous leukemia shows lack of agreement in blood and bone marrow samples.
    Stock W; Yu D; Karrison T; Sher D; Stone RM; Larson RA; Bloomfield CD
    Int J Oncol; 2006 May; 28(5):1099-103. PubMed ID: 16596225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia.
    Lapillonne H; Renneville A; Auvrignon A; Flamant C; Blaise A; Perot C; Lai JL; Ballerini P; Mazingue F; Fasola S; Dehée A; Bellman F; Adam M; Labopin M; Douay L; Leverger G; Preudhomme C; Landman-Parker J
    J Clin Oncol; 2006 Apr; 24(10):1507-15. PubMed ID: 16575000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21).
    Leroy H; de Botton S; Grardel-Duflos N; Darre S; Leleu X; Roumier C; Morschhauser F; Lai JL; Bauters F; Fenaux P; Preudhomme C
    Leukemia; 2005 Mar; 19(3):367-72. PubMed ID: 15674426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study.
    Madzo J; Zuna J; Muzíková K; Kalinová M; Krejcí O; Hrusák O; Otová B; Starý J; Trka J
    Cancer; 2003 Jan; 97(1):105-13. PubMed ID: 12491511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.