These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20625147)

  • 1. Antimicrobial mechanism of action of transferrins: selective inhibition of H+-ATPase.
    Andrés MT; Fierro JF
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4335-42. PubMed ID: 20625147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal Mechanism of Action of Lactoferrin: Identification of H+-ATPase (P3A-Type) as a New Apoptotic-Cell Membrane Receptor.
    Andrés MT; Acosta-Zaldívar M; Fierro JF
    Antimicrob Agents Chemother; 2016 Jul; 60(7):4206-16. PubMed ID: 27139463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemin reconstitutes proton extrusion in an H(+)-ATPase-negative mutant of Lactococcus lactis.
    Blank LM; Koebmann BJ; Michelsen O; Nielsen LK; Jensen PR
    J Bacteriol; 2001 Nov; 183(22):6707-9. PubMed ID: 11673444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protonmotive force drives ATP synthesis in bacteria.
    Maloney PC; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport.
    Brooijmans RJ; Poolman B; Schuurman-Wolters GK; de Vos WM; Hugenholtz J
    J Bacteriol; 2007 Jul; 189(14):5203-9. PubMed ID: 17496098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis.
    van den Berg van Saparoea HB; Lubelski J; van Merkerk R; Mazurkiewicz PS; Driessen AJ
    Biochemistry; 2005 Dec; 44(51):16931-8. PubMed ID: 16363806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viability and metabolic capability are maintained by Escherichia coli, Pseudomonas aeruginosa, and Streptococcus lactis at very low adenylate energy charge.
    Barrette WC; Hannum DM; Wheeler WD; Hurst JK
    J Bacteriol; 1988 Aug; 170(8):3655-9. PubMed ID: 3136145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nisin production by a mixed-culture system consisting of Lactococcus lactis and Kluyveromyces marxianus.
    Shimizu H; Mizuguchi T; Tanaka E; Shioya S
    Appl Environ Microbiol; 1999 Jul; 65(7):3134-41. PubMed ID: 10388714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis.
    Koebmann BJ; Nilsson D; Kuipers OP; Jensen PR
    J Bacteriol; 2000 Sep; 182(17):4738-43. PubMed ID: 10940012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
    Koebmann BJ; Solem C; Pedersen MB; Nilsson D; Jensen PR
    Appl Environ Microbiol; 2002 Sep; 68(9):4274-82. PubMed ID: 12200276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory stimulation and generation of superoxide radicals in Pseudomonas aeruginosa by fungal naphthoquinones.
    Haraguchi H; Yokoyama K; Oike S; Ito M; Nozaki H
    Arch Microbiol; 1997 Jan; 167(1):6-10. PubMed ID: 9000335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk.
    Tachon S; Brandsma JB; Yvon M
    Appl Environ Microbiol; 2010 Mar; 76(5):1311-9. PubMed ID: 20038695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production.
    Barrette WC; Hannum DM; Wheeler WD; Hurst JK
    Biochemistry; 1989 Nov; 28(23):9172-8. PubMed ID: 2557918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron saturation alters the effect of lactoferrin on the proliferation and differentiation of human enterocytes (Caco-2 cells).
    Oguchi S; Walker WA; Sanderson IR
    Biol Neonate; 1995; 67(5):330-9. PubMed ID: 7662812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H+/ATP stoichiometry of cowpea Rhizobium sp. strain 32H1 cells grown under nitrogen-fixing and nitrogen-nonfixing conditions.
    Gober JW; Kashket ER
    J Bacteriol; 1984 Oct; 160(1):216-21. PubMed ID: 6237099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a mutant of Lactococcus lactis with reduced membrane-bound ATPase activity under acidic conditions.
    Amachi S; Ishikawa K; Toyoda S; Kagawa Y; Yokota A; Tomita F
    Biosci Biotechnol Biochem; 1998 Aug; 62(8):1574-80. PubMed ID: 9757564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases.
    Mattsson JP; Väänänen K; Wallmark B; Lorentzon P
    Biochim Biophys Acta; 1991 Jun; 1065(2):261-8. PubMed ID: 1647821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions.
    Kashket ER
    J Bacteriol; 1981 Apr; 146(1):369-76. PubMed ID: 6260743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.