These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20625582)
1. A structural and functional mimic of the active site of NiFe hydrogenases. Canaguier S; Field M; Oudart Y; Pécaut J; Fontecave M; Artero V Chem Commun (Camb); 2010 Aug; 46(32):5876-8. PubMed ID: 20625582 [TBL] [Abstract][Full Text] [Related]
2. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503 [TBL] [Abstract][Full Text] [Related]
3. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies. Canaguier S; Vaccaro L; Artero V; Ostermann R; Pécaut J; Field MJ; Fontecave M Chemistry; 2009 Sep; 15(37):9350-64. PubMed ID: 19670195 [TBL] [Abstract][Full Text] [Related]
4. [Ni(xbsms)Ru(CO)2Cl2]: a bioinspired nickel-ruthenium functional model of [NiFe] hydrogenase. Oudart Y; Artero V; Pécaut J; Fontecave M Inorg Chem; 2006 May; 45(11):4334-6. PubMed ID: 16711679 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni-Ru model compound. Vaccaro L; Artero V; Canaguier S; Fontecave M; Field MJ Dalton Trans; 2010 Mar; 39(12):3043-9. PubMed ID: 20221538 [TBL] [Abstract][Full Text] [Related]
6. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098 [TBL] [Abstract][Full Text] [Related]
7. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
8. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase. Li Z; Ohki Y; Tatsumi K J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562 [TBL] [Abstract][Full Text] [Related]
9. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. Liu P; Rodriguez JA J Am Chem Soc; 2005 Oct; 127(42):14871-8. PubMed ID: 16231942 [TBL] [Abstract][Full Text] [Related]
11. A trinuclear [NiFe] cluster exhibiting structural and functional key features of [NiFe] hydrogenases. Sellmann D; Lauderbach F; Geipel F; Heinemann FW; Moll M Angew Chem Int Ed Engl; 2004 Jun; 43(24):3141-4. PubMed ID: 15199561 [No Abstract] [Full Text] [Related]
12. A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation. Weber K; Krämer T; Shafaat HS; Weyhermüller T; Bill E; van Gastel M; Neese F; Lubitz W J Am Chem Soc; 2012 Dec; 134(51):20745-55. PubMed ID: 23194246 [TBL] [Abstract][Full Text] [Related]
13. Nickel-ruthenium-based complexes as biomimetic models of [NiFe] and [NiFeSe] hydrogenases for dihydrogen evolution. Gezer G; Verbeek S; Siegler MA; Bouwman E Dalton Trans; 2017 Oct; 46(39):13590-13596. PubMed ID: 28952642 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer and hydrogen generation from a molecular dyad: platinum(II) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Wang WG; Wang F; Wang HY; Tung CH; Wu LZ Dalton Trans; 2012 Feb; 41(8):2420-6. PubMed ID: 22218815 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of the H-cluster framework of iron-only hydrogenase. Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741 [TBL] [Abstract][Full Text] [Related]
17. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754 [TBL] [Abstract][Full Text] [Related]
18. Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Caserta G; Roy S; Atta M; Artero V; Fontecave M Curr Opin Chem Biol; 2015 Apr; 25():36-47. PubMed ID: 25553541 [TBL] [Abstract][Full Text] [Related]
19. Construction of heterometallic clusters in a small peptide scaffold as [NiFe]-hydrogenase models: development of a synthetic methodology. Dutta A; Hamilton GA; Hartnett HE; Jones AK Inorg Chem; 2012 Sep; 51(18):9580-8. PubMed ID: 22924594 [TBL] [Abstract][Full Text] [Related]
20. Dihydrogen activation by a diruthenium analogue of the Fe-only hydrogenase active site. Justice AK; Linck RC; Rauchfuss TB; Wilson SR J Am Chem Soc; 2004 Oct; 126(41):13214-5. PubMed ID: 15479062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]