These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 20625583)
1. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583 [TBL] [Abstract][Full Text] [Related]
2. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Ren PW; Ju XJ; Xie R; Chu LY J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008 [TBL] [Abstract][Full Text] [Related]
4. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface. Hirama H; Kambe T; Aketagawa K; Ota T; Moriguchi H; Torii T Langmuir; 2013 Jan; 29(2):519-24. PubMed ID: 23234383 [TBL] [Abstract][Full Text] [Related]
5. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Huang KS; Lai TH; Lin YC Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602 [TBL] [Abstract][Full Text] [Related]
6. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. Machado AH; Lundberg D; Ribeiro AJ; Veiga FJ; Lindman B; Miguel MG; Olsson U Langmuir; 2012 Mar; 28(9):4131-41. PubMed ID: 22296569 [TBL] [Abstract][Full Text] [Related]
7. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658 [TBL] [Abstract][Full Text] [Related]
8. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568 [TBL] [Abstract][Full Text] [Related]
9. Size control of calcium alginate beads containing living cells using micro-nozzle array. Sugiura S; Oda T; Izumida Y; Aoyagi Y; Satake M; Ochiai A; Ohkohchi N; Nakajima M Biomaterials; 2005 Jun; 26(16):3327-31. PubMed ID: 15603828 [TBL] [Abstract][Full Text] [Related]
10. Biopolymer microparticle and nanoparticle formation within a microfluidic device. Rondeau E; Cooper-White JJ Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374 [TBL] [Abstract][Full Text] [Related]
11. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667 [TBL] [Abstract][Full Text] [Related]
12. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Xu JH; Li SW; Tan J; Wang YJ; Luo GS Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223 [TBL] [Abstract][Full Text] [Related]
13. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. Wang JY; Jin Y; Xie R; Liu JY; Ju XJ; Meng T; Chu LY J Colloid Interface Sci; 2011 Jan; 353(1):61-8. PubMed ID: 20932528 [TBL] [Abstract][Full Text] [Related]
14. Influence of pH and ionic strength on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-alginate interfaces. Harnsilawat T; Pongsawatmanit R; McClements DJ Biomacromolecules; 2006 Jun; 7(6):2052-8. PubMed ID: 16768433 [TBL] [Abstract][Full Text] [Related]
15. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering. Lin YH; Yang YW; Chen YD; Wang SS; Chang YH; Wu MH Lab Chip; 2012 Mar; 12(6):1164-73. PubMed ID: 22322420 [TBL] [Abstract][Full Text] [Related]
16. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification. Khalid N; Kobayashi I; Neves MA; Uemura K; Nakajima M; Nabetani H J Microencapsul; 2015; 32(6):570-7. PubMed ID: 26190217 [TBL] [Abstract][Full Text] [Related]
17. Cross-linking of dried paracetamol alginate granules Part 1. The effect of the cross-linking process variables. Mukhopadhyay D; Reid M; Saville D; Tucker IG Int J Pharm; 2005 Aug; 299(1-2):134-45. PubMed ID: 15994037 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation. Lin YS; Yang CH; Hsu YY; Hsieh CL Electrophoresis; 2013 Feb; 34(3):425-31. PubMed ID: 23161405 [TBL] [Abstract][Full Text] [Related]
19. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460 [TBL] [Abstract][Full Text] [Related]
20. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation. Huang KS; Lai TH; Lin YC Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]