These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20625799)
1. Altered expression of pro- and anti-inflammatory cytokines is associated with reduced cardiac function in rats following coronary microembolization. Li L; Zhao X; Lu Y; Huang W; Wen W Mol Cell Biochem; 2010 Sep; 342(1-2):183-90. PubMed ID: 20625799 [TBL] [Abstract][Full Text] [Related]
2. TNF-α-induced cardiomyocyte apoptosis contributes to cardiac dysfunction after coronary microembolization in mini-pigs. Chen ZW; Qian JY; Ma JY; Chang SF; Yun H; Jin H; Sun AJ; Zou YZ; Ge JB J Cell Mol Med; 2014 Oct; 18(10):1953-63. PubMed ID: 25130514 [TBL] [Abstract][Full Text] [Related]
3. Effects of Trimetazidine on PDCD4/NF-κB/TNF-α Pathway in Coronary Microembolization. Su Q; Li L; Zhao J; Sun Y; Yang H Cell Physiol Biochem; 2017; 42(2):753-760. PubMed ID: 28683436 [TBL] [Abstract][Full Text] [Related]
4. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factor-α mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway. Li L; Qu N; Li DH; Wen WM; Huang WQ Chin Med J (Engl); 2011 Jan; 124(1):100-5. PubMed ID: 21362316 [TBL] [Abstract][Full Text] [Related]
5. Role of high-mobility group B1 in myocardial injury induced by coronary microembolization in rats. Chen QF; Wang W; Huang Z; Huang DL; Wang F; Li J; Liu XF; Sun ZY; Zeng XT J Cell Biochem; 2019 Mar; 120(3):4238-4247. PubMed ID: 30269353 [TBL] [Abstract][Full Text] [Related]
6. Role of TLR4/MyD88/NF-κB signaling pathway in coronary microembolization-induced myocardial injury prevented and treated with nicorandil. Su Q; Lv X; Sun Y; Ye Z; Kong B; Qin Z Biomed Pharmacother; 2018 Oct; 106():776-784. PubMed ID: 29990871 [TBL] [Abstract][Full Text] [Related]
7. Role of high mobility group A1/nuclear factor-kappa B signaling in coronary microembolization-induced myocardial injury. Su Q; Lv X; Sun Y; Yang H; Ye Z; Li L Biomed Pharmacother; 2018 Sep; 105():1164-1171. PubMed ID: 30021353 [TBL] [Abstract][Full Text] [Related]
8. Beta blocker metoprolol protects against contractile dysfunction in rats after coronary microembolization by regulating expression of myocardial inflammatory cytokines. Lu Y; Li L; Zhao X; Huang W; Wen W Life Sci; 2011 Jun; 88(23-24):1009-15. PubMed ID: 21443890 [TBL] [Abstract][Full Text] [Related]
9. Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Li S; Zhong S; Zeng K; Luo Y; Zhang F; Sun X; Chen L Basic Res Cardiol; 2010 Jan; 105(1):139-50. PubMed ID: 19823892 [TBL] [Abstract][Full Text] [Related]
10. The role of ERK1/2 signaling pathway in coronary microembolization-induced rat myocardial inflammation and injury. Li L; Li DH; Qu N; Wen WM; Huang WQ Cardiology; 2010; 117(3):207-15. PubMed ID: 21150201 [TBL] [Abstract][Full Text] [Related]
11. Effects of the TLR4/Myd88/NF-κB Signaling Pathway on NLRP3 Inflammasome in Coronary Microembolization-Induced Myocardial Injury. Su Q; Li L; Sun Y; Yang H; Ye Z; Zhao J Cell Physiol Biochem; 2018; 47(4):1497-1508. PubMed ID: 29940584 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of programmed cell death factor 4/nuclear factor-κB signaling pathway in porcine coronary micro-embolization-induced cardiac dysfunction. Su Q; Li L; Wang J; Zhou Y; Liu Y Exp Biol Med (Maywood); 2015 Nov; 240(11):1426-33. PubMed ID: 25769315 [TBL] [Abstract][Full Text] [Related]
13. [Effects of microRNA-34a on regulating silent information regulator 1 and influence of the factor on myocardial damage of rats with severe burns at early stage]. Bai XZ; He T; Zhang JL; Liu Y; Cao MY; Zhang JN; Cai WX; Jia YH; Shi JH; Su LL; Hu DH Zhonghua Shao Shang Za Zhi; 2018 Jan; 34(1):21-28. PubMed ID: 29374923 [No Abstract] [Full Text] [Related]
14. Protective effects and mechanism of curcumin on myocardial injury induced by coronary microembolization. Liu Y; Liu Y; Huang X; Zhang J; Yang L J Cell Biochem; 2019 Apr; 120(4):5695-5703. PubMed ID: 30324684 [TBL] [Abstract][Full Text] [Related]
15. [Time course of myocardial NF-kappaB activation post coronary microembolization]. Li SM; Zeng K; Wang WW; Zhang FL; Sun XD; Chen LL Zhonghua Xin Xue Guan Bing Za Zhi; 2008 Nov; 36(11):1016-20. PubMed ID: 19102917 [TBL] [Abstract][Full Text] [Related]
16. Potential Involvement of MiR-30e-3p in Myocardial Injury Induced by Coronary Microembolization via Autophagy Activation. Wang XT; Wu XD; Lu YX; Sun YH; Zhu HH; Liang JB; He WK; Zeng ZY; Li L Cell Physiol Biochem; 2017; 44(5):1995-2004. PubMed ID: 29237156 [TBL] [Abstract][Full Text] [Related]
17. [Influences of hydrogen-rich saline on acute kidney injury in severely burned rats and mechanism]. Wang LL; Guo SX; Wu P; Shao HW; Han CM Zhonghua Shao Shang Za Zhi; 2018 Sep; 34(9):629-636. PubMed ID: 30293367 [No Abstract] [Full Text] [Related]
18. Protective effect of glycyrrhizin on coronary microembolization-induced myocardial dysfunction in rats. Yuan Y; Li B; Peng W; Xu Z Pharmacol Res Perspect; 2021 Feb; 9(1):e00714. PubMed ID: 33507583 [TBL] [Abstract][Full Text] [Related]
19. Effects of atorvastatin on PDCD4/NF-κB/TNF-α signaling pathway during coronary microembolization of miniature pigs. Su Q; Li L; Liu T; Wang J; Zhou Y; Liu Y Exp Mol Pathol; 2015 Dec; 99(3):564-9. PubMed ID: 26341137 [TBL] [Abstract][Full Text] [Related]
20. MiRNA Expression Profile of the Myocardial Tissue of Pigs with Coronary Microembolization. Su Q; Li L; Zhao J; Sun Y; Yang H Cell Physiol Biochem; 2017; 43(3):1012-1024. PubMed ID: 28968594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]