BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20625847)

  • 1. Neurosurgical robotic system for brain tumor removal.
    Arata J; Tada Y; Kozuka H; Wada T; Saito Y; Ikedo N; Hayashi Y; Fujii M; Kajita Y; Mizuno M; Wakabayashi T; Yoshida J; Fujimoto H
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):375-85. PubMed ID: 20625847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
    Ko S; Nakazawa A; Kurose Y; Harada K; Mitsuishi M; Sora S; Shono N; Nakatomi H; Saito N; Morita A
    Neurosurg Focus; 2017 May; 42(5):E5. PubMed ID: 28463616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the PathFinder neurosurgical robot using a phantom.
    Eljamel MS
    Int J Med Robot; 2007 Dec; 3(4):372-7. PubMed ID: 17914750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgical bedside master console for neurosurgical robotic system.
    Arata J; Kenmotsu H; Takagi M; Hori T; Miyagi T; Fujimoto H; Kajita Y; Hayashi Y; Chinzei K; Hashizume M
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):75-86. PubMed ID: 22585461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a completely robotized neurosurgical operating microscope.
    Kantelhardt SR; Finke M; Schweikard A; Giese A
    Neurosurgery; 2013 Jan; 72 Suppl 1():19-26. PubMed ID: 23254808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study on image-based control of surgical robot using a 60-GHz wireless communication system.
    Takizawa K; Omori S; Harada H; Nakamura R; Muragaki Y; Iseki H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6255-8. PubMed ID: 19963666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery.
    Liao H; Noguchi M; Maruyama T; Muragaki Y; Kobayashi E; Iseki H; Sakuma I
    Med Image Anal; 2012 Apr; 16(3):754-66. PubMed ID: 21183395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of intraoperative 5-aminolevulinic acid-induced fluorescence and 3-D MR imaging for guidance of robotic laser ablation for precision neurosurgery.
    Liao H; Shimaya K; Wang K; Maruyama T; Noguchi M; Muragaki Y; Kobayashi E; Iseki H; Sakuma I
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):373-80. PubMed ID: 18982627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Surgical robotics in neurosurgery].
    Haidegger T; BenyĆ³ Z
    Orv Hetil; 2009 Sep; 150(36):1701-11. PubMed ID: 19709985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging machines with microsurgery: clinical experience with neuroArm.
    Sutherland GR; Lama S; Gan LS; Wolfsberger S; Zareinia K
    J Neurosurg; 2013 Mar; 118(3):521-9. PubMed ID: 23240694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical robotics: a review and neurosurgical prototype development.
    Louw DF; Fielding T; McBeth PB; Gregoris D; Newhook P; Sutherland GR
    Neurosurgery; 2004 Mar; 54(3):525-36; discussion 536-7. PubMed ID: 15028126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable MRI-guided robotic surgical manipulator: prostate brachytherapy and neurosurgery applications.
    Su H; Iordachita II; Yan X; Cole GA; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2111-4. PubMed ID: 22254754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward robot-assisted neurosurgical lasers.
    Motkoski JW; Yang FW; Lwu SH; Sutherland GR
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):892-8. PubMed ID: 23047855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and verification of a safety region for brain tumor removal with a telesurgical robot system.
    Jang J; Kim HW; Kim YS
    Minim Invasive Ther Allied Technol; 2014 Dec; 23(6):333-40. PubMed ID: 25345417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing neurosurgery with image-guided robotics.
    Pandya S; Motkoski JW; Serrano-Almeida C; Greer AD; Latour I; Sutherland GR
    J Neurosurg; 2009 Dec; 111(6):1141-9. PubMed ID: 19374495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.