BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20625847)

  • 21. Intracranial image-guided neurosurgery: experience with a new electromagnetic navigation system.
    Suess O; Kombos T; Kurth R; Suess S; Mularski S; Hammersen S; Brock M
    Acta Neurochir (Wien); 2001 Sep; 143(9):927-34. PubMed ID: 11685625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel robotic laser ablation system for precision neurosurgery with intraoperative 5-ALA-induced PpIX fluorescence detection.
    Noguchi M; Aoki E; Yoshida D; Kobayashi E; Omori S; Muragaki Y; Iseki H; Nakamura K; Sakuma I
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):543-50. PubMed ID: 17354933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Pathfinder image-guided surgical robot.
    Deacon G; Harwood A; Holdback J; Maiwand D; Pearce M; Reid I; Street M; Taylor J
    Proc Inst Mech Eng H; 2010; 224(5):691-713. PubMed ID: 20718271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semi-autonomous image-guided brain tumour resection using an integrated robotic system: A bench-top study.
    Hu D; Gong Y; Seibel EJ; Sekhar LN; Hannaford B
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29105281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application accuracy of the NeuroMate robot--A quantitative comparison with frameless and frame-based surgical localization systems.
    Li QH; Zamorano L; Pandya A; Perez R; Gong J; Diaz F
    Comput Aided Surg; 2002; 7(2):90-8. PubMed ID: 12112718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of a neurosurgical robotic system to make accurate burr holes.
    Brodie J; Eljamel S
    Int J Med Robot; 2011 Mar; 7(1):101-6. PubMed ID: 21341368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.
    Kobayashi Y; Sekiguchi Y; Tomono Y; Watanabe H; Toyoda K; Konishi K; Tomikawa M; Ieiri S; Tanoue K; Hashizume M; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():979-83. PubMed ID: 21096985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robotics in neurosurgery.
    McBeth PB; Louw DF; Rizun PR; Sutherland GR
    Am J Surg; 2004 Oct; 188(4A Suppl):68S-75S. PubMed ID: 15476655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Information guided technology and procedure in neurosurgical field].
    Iseki H; Muragaki Y; Nakamura R; Nanbu K; Hori T
    No Shinkei Geka; 2007 Jan; 35(1):85-91. PubMed ID: 17228773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensors management in robotic neurosurgery: the ROBOCAST project.
    Vaccarella A; Comparetti MD; Enquobahrie A; Ferrigno G; De Momi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2119-22. PubMed ID: 22254756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cyber-physical management system for delivering and monitoring surgical instruments in the OR.
    Li YT; Jacob M; Akingba G; Wachs JP
    Surg Innov; 2013 Aug; 20(4):377-84. PubMed ID: 23037804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating tumour removal in neurosurgery.
    Radetzky A; Rudolph M
    Int J Med Inform; 2001 Dec; 64(2-3):461-72. PubMed ID: 11734406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of surgical robots for spinal interventions.
    Bertelsen A; Melo J; Sánchez E; Borro D
    Int J Med Robot; 2013 Dec; 9(4):407-22. PubMed ID: 23239581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automating neurosurgical tumor resection surgery: Volumetric laser ablation of cadaveric porcine brain with integrated surface mapping.
    Ross WA; Hill WM; Hoang KB; Laarakker AS; Mann BP; Codd PJ
    Lasers Surg Med; 2018 Dec; 50(10):1017-1024. PubMed ID: 29984837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal robotics: current applications and future perspectives.
    Roser F; Tatagiba M; Maier G
    Neurosurgery; 2013 Jan; 72 Suppl 1():12-8. PubMed ID: 23254800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain Games and Knife Play.
    Blott J
    Lancet Oncol; 2017 Jul; 18(7):862. PubMed ID: 28677567
    [No Abstract]   [Full Text] [Related]  

  • 39. Image-guided robotic neurosurgery--an in vitro and in vivo point accuracy evaluation experimental study.
    Chan F; Kassim I; Lo C; Ho CL; Low D; Ang BT; Ng I
    Surg Neurol; 2009 Jun; 71(6):640-7, discussion 647-8. PubMed ID: 19329150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.