BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20626011)

  • 1. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.
    Ciesielski A; Palma CA; Bonini M; Samorì P
    Adv Mater; 2010 Aug; 22(32):3506-20. PubMed ID: 20626011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.
    Ciesielski A; Samorì P
    Nanoscale; 2011 Apr; 3(4):1397-410. PubMed ID: 21350766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of supramolecular H-bonded nanopolygons via self-assembly of programmed molecular modules.
    Llanes-Pallas A; Palma CA; Piot L; Belbakra A; Listorti A; Prato M; Samorì P; Armaroli N; Bonifazi D
    J Am Chem Soc; 2009 Jan; 131(2):509-20. PubMed ID: 19105700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of Natural and Unnatural Nucleobases at Surfaces and Interfaces.
    Ciesielski A; El Garah M; Masiero S; Samorì P
    Small; 2016 Jan; 12(1):83-95. PubMed ID: 26488679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review.
    El Hasnaoui N; Fatimi A; Benjalal Y
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface.
    Stepanow S; Lin N; Vidal F; Landa A; Ruben M; Barth JV; Kern K
    Nano Lett; 2005 May; 5(5):901-4. PubMed ID: 15884891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding versus van der Waals interactions: competitive influence of noncovalent interactions on 2D self-assembly at the liquid-solid interface.
    Mali KS; Lava K; Binnemans K; De Feyter S
    Chemistry; 2010 Dec; 16(48):14447-58. PubMed ID: 21064044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring two-dimensional PTCDA-melamine self-assembled architectures at room temperature by tuning molecular ratio.
    Sun X; Jonkman HT; Silly F
    Nanotechnology; 2010 Apr; 21(16):165602. PubMed ID: 20348601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids.
    Higashi SL; Rozi N; Hanifah SA; Ikeda M
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional nanoarchitectonics: organic and hybrid materials.
    Govindaraju T; Avinash MB
    Nanoscale; 2012 Oct; 4(20):6102-17. PubMed ID: 22782293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imine-Based Architectures at Surfaces and Interfaces: From Self-Assembly to Dynamic Covalent Chemistry in 2D.
    Janica I; Patroniak V; Samorì P; Ciesielski A
    Chem Asian J; 2018 Mar; 13(5):465-481. PubMed ID: 29323791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composing RNA Nanostructures from a Syntax of RNA Structural Modules.
    Geary C; Chworos A; Verzemnieks E; Voss NR; Jaeger L
    Nano Lett; 2017 Nov; 17(11):7095-7101. PubMed ID: 29039189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces.
    Bonifazi D; Mohnani S; Llanes-Pallas A
    Chemistry; 2009 Jul; 15(29):7004-25. PubMed ID: 19569139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design.
    Okesola BO; Mata A
    Chem Soc Rev; 2018 May; 47(10):3721-3736. PubMed ID: 29697727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional self-assembly of a two-component molecular system: formation of an ordered and homogeneous molecular mesh.
    Tao F; Bernasek SL
    J Am Chem Soc; 2005 Sep; 127(37):12750-1. PubMed ID: 16159239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration-dependent supramolecular engineering of hydrogen-bonded nanostructures at surfaces: predicting self-assembly in 2D.
    Ciesielski A; Szabelski PJ; Rżysko W; Cadeddu A; Cook TR; Stang PJ; Samorì P
    J Am Chem Soc; 2013 May; 135(18):6942-50. PubMed ID: 23590179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.
    Lescop C
    Acc Chem Res; 2017 Apr; 50(4):885-894. PubMed ID: 28263559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.