These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20626011)

  • 21. Self-templating 2D supramolecular networks: a new avenue to reach control over a bilayer formation.
    Ciesielski A; Cadeddu A; Palma CA; Gorczyński A; Patroniak V; Cecchini M; Samorì P
    Nanoscale; 2011 Oct; 3(10):4125-9. PubMed ID: 21792434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly.
    Liu J; Chen T; Deng X; Wang D; Pei J; Wan LJ
    J Am Chem Soc; 2011 Dec; 133(51):21010-5. PubMed ID: 22106949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composing RNA Nanostructures from a Syntax of RNA Structural Modules.
    Geary C; Chworos A; Verzemnieks E; Voss NR; Jaeger L
    Nano Lett; 2017 Nov; 17(11):7095-7101. PubMed ID: 29039189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials.
    Elacqua E; Lye DS; Weck M
    Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailoring bicomponent supramolecular nanoporous networks: phase segregation, polymorphism, and glasses at the solid-liquid interface.
    Palma CA; Bjork J; Bonini M; Dyer MS; Llanes-Pallas A; Bonifazi D; Persson M; Samorì P
    J Am Chem Soc; 2009 Sep; 131(36):13062-71. PubMed ID: 19702301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2D self-assembly of fused oligothiophenes: molecular control of morphology.
    Fu C; Rosei F; Perepichka DF
    ACS Nano; 2012 Sep; 6(9):7973-80. PubMed ID: 22871038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Living on the edge: Tuning supramolecular interactions to design two-dimensional organic crystals near the boundary of two stable structural phases.
    Hirsch BE; McDonald KP; Flood AH; Tait SL
    J Chem Phys; 2015 Mar; 142(10):101914. PubMed ID: 25770503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.
    Hu J; Liu S
    Acc Chem Res; 2014 Jul; 47(7):2084-95. PubMed ID: 24742049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular self-assembly of π-conjugated hydrocarbons via 2D cooperative CH/π interaction.
    Li Q; Han C; Horton SR; Fuentes-Cabrera M; Sumpter BG; Lu W; Bernholc J; Maksymovych P; Pan M
    ACS Nano; 2012 Jan; 6(1):566-72. PubMed ID: 22168531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multicomponent monolayer architectures at the solid-liquid interface: towards controlled space-confined properties and reactivity of functional building blocks.
    Surin M; Samorì P
    Small; 2007 Feb; 3(2):190-4. PubMed ID: 17191290
    [No Abstract]   [Full Text] [Related]  

  • 33. Self-assembly of optical molecules with supramolecular concepts.
    Okamoto K; Chithra P; Richards GJ; Hill JP; Ariga K
    Int J Mol Sci; 2009 Apr; 10(5):1950-1966. PubMed ID: 19564931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials.
    Xu X; Winterwerber P; Ng D; Wu Y
    Top Curr Chem (Cham); 2020 Mar; 378(2):31. PubMed ID: 32146596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-assembled nanopatch with peptide-organic multilayers and mechanical properties.
    Liu L; Li Y; Xia D; Bortolini C; Zhang S; Yang Y; Pedersen JS; Wang C; Besenbacher F; Dong M
    Nanoscale; 2015 Feb; 7(6):2250-4. PubMed ID: 25566855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.
    Shen X; Mo X; Moore R; Frazier SJ; Iwamoto T; Tomich JM; Sun XS
    J Nanosci Nanotechnol; 2006 Mar; 6(3):837-44. PubMed ID: 16573147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling RNA self-assembly to form filaments.
    Nasalean L; Baudrey S; Leontis NB; Jaeger L
    Nucleic Acids Res; 2006; 34(5):1381-92. PubMed ID: 16522648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA self-assembly and RNA nanotechnology.
    Grabow WW; Jaeger L
    Acc Chem Res; 2014 Jun; 47(6):1871-80. PubMed ID: 24856178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular chemical biology; bioactive synthetic self-assemblies.
    Petkau-Milroy K; Brunsveld L
    Org Biomol Chem; 2013 Jan; 11(2):219-32. PubMed ID: 23160566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concentration-dependent supramolecular patterns of C
    Garah ME; Cook TR; Sepehrpour H; Ciesielski A; Stang PJ; Samorì P
    Colloids Surf B Biointerfaces; 2018 Aug; 168():211-216. PubMed ID: 29198983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.