These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 20626248)
41. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). Yan X; Murphy BT; Hammond GB; Vinson JA; Neto CC J Agric Food Chem; 2002 Oct; 50(21):5844-9. PubMed ID: 12358448 [TBL] [Abstract][Full Text] [Related]
42. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe Afolabi OB; Oloyede OI; Agunbiade SO J Integr Med; 2018 May; 16(3):192-198. PubMed ID: 29706572 [TBL] [Abstract][Full Text] [Related]
43. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. Oboh G; Agunloye OM; Adefegha SA; Akinyemi AJ; Ademiluyi AO J Basic Clin Physiol Pharmacol; 2015 Mar; 26(2):165-70. PubMed ID: 24825096 [TBL] [Abstract][Full Text] [Related]
44. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
45. ANTI-OXIDATIVE, (α-GLUCOSIDASE AND α-AMYLASE INHIBITORY ACTIVITY OF VITEX DONIANA: POSSIBLE EXPLOITATION IN THE MANAGEMENT OF TYPE 2 DIABETES. Ibrahim MA; Koorbanally NA; Islam S Acta Pol Pharm; 2016 Sep; 73(5):1235-1247. PubMed ID: 29638064 [TBL] [Abstract][Full Text] [Related]
46. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Alqahtani AS; Hidayathulla S; Rehman MT; ElGamal AA; Al-Massarani S; Razmovski-Naumovski V; Alqahtani MS; El Dib RA; AlAjmi MF Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31905962 [No Abstract] [Full Text] [Related]
47. Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phoboo S; Pinto Mda S; Barbosa AC; Sarkar D; Bhowmik PC; Jha PK; Shetty K Phytother Res; 2013 Feb; 27(2):227-35. PubMed ID: 22523004 [TBL] [Abstract][Full Text] [Related]
48. In vitro inhibitory potential of selected Malaysian plants against key enzymes involved in hyperglycemia and hypertension. Loh SP; Hadira O Malays J Nutr; 2011 Apr; 17(1):77-86. PubMed ID: 22135867 [TBL] [Abstract][Full Text] [Related]
49. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. González-Muñoz A; Quesille-Villalobos AM; Fuentealba C; Shetty K; Gálvez Ranilla L J Agric Food Chem; 2013 Nov; 61(46):10995-1007. PubMed ID: 24156632 [TBL] [Abstract][Full Text] [Related]
50. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Mikulic-Petkovsek M; Schmitzer V; Slatnar A; Stampar F; Veberic R J Food Sci; 2012 Oct; 77(10):C1064-70. PubMed ID: 22924969 [TBL] [Abstract][Full Text] [Related]
51. Characterization of flavonols in cranberry (Vaccinium macrocarpon) powder. Vvedenskaya IO; Rosen RT; Guido JE; Russell DJ; Mills KA; Vorsa N J Agric Food Chem; 2004 Jan; 52(2):188-95. PubMed ID: 14733493 [TBL] [Abstract][Full Text] [Related]
52. Role of phenolics as antioxidants, biomolecule protectors and as anti-diabetic factors--evaluation on bark and empty pods of Acacia auriculiformis. Sathya A; Siddhuraju P Asian Pac J Trop Med; 2012 Oct; 5(10):757-65. PubMed ID: 23043912 [TBL] [Abstract][Full Text] [Related]
53. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Kwon YI; Apostolidis E; Shetty K Bioresour Technol; 2008 May; 99(8):2981-8. PubMed ID: 17706416 [TBL] [Abstract][Full Text] [Related]
54. Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Cheplick S; Kwon YI; Bhowmik P; Shetty K Bioresour Technol; 2010 Jan; 101(1):404-13. PubMed ID: 19695871 [TBL] [Abstract][Full Text] [Related]
55. Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Pradeep PM; Sreerama YN Food Chem; 2015 Feb; 169():455-63. PubMed ID: 25236251 [TBL] [Abstract][Full Text] [Related]
56. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Justino AB; Miranda NC; Franco RR; Martins MM; Silva NMD; Espindola FS Biomed Pharmacother; 2018 Apr; 100():83-92. PubMed ID: 29425747 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices. Adefegha SA; Oboh G Pharm Biol; 2012 Jul; 50(7):857-65. PubMed ID: 22480175 [TBL] [Abstract][Full Text] [Related]
58. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties. Shanmugam S; Gomes IA; Denadai M; Dos Santos Lima B; de Souza Araújo AA; Narain N; Neta MTSL; Serafini MR; Quintans-Júnior LJ; Thangaraj P Food Res Int; 2018 Jun; 108():611-620. PubMed ID: 29735097 [TBL] [Abstract][Full Text] [Related]
59. Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Perez-Gutierrez RM; Damian-Guzman M Biol Pharm Bull; 2012; 35(9):1516-24. PubMed ID: 22975503 [TBL] [Abstract][Full Text] [Related]