These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 20626248)
61. Chemical Composition and Bioactivities of Two Common Chaenomeles Fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. Miao J; Zhao C; Li X; Chen X; Mao X; Huang H; Wang T; Gao W J Food Sci; 2016 Aug; 81(8):H2049-58. PubMed ID: 27384225 [TBL] [Abstract][Full Text] [Related]
62. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae). Ahmed AS; Ahmed Q; Saxena AK; Jamal P Pak J Pharm Sci; 2017 Jan; 30(1):113-126. PubMed ID: 28603121 [TBL] [Abstract][Full Text] [Related]
63. Inhibitors of α-glucosidase and α-amylase from Cyperus rotundus. Tran HH; Nguyen MC; Le HT; Nguyen TL; Pham TB; Chau VM; Nguyen HN; Nguyen TD Pharm Biol; 2014 Jan; 52(1):74-7. PubMed ID: 24044731 [TBL] [Abstract][Full Text] [Related]
64. Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. de Macêdo IYL; Garcia LF; Oliveira Neto JR; de Siqueira Leite KC; Ferreira VS; Ghedini PC; de Souza Gil E Food Chem; 2017 Feb; 217():326-331. PubMed ID: 27664641 [TBL] [Abstract][Full Text] [Related]
65. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant Efficacy. Abeywickrama G; Debnath SC; Ambigaipalan P; Shahidi F J Agric Food Chem; 2016 Dec; 64(49):9342-9351. PubMed ID: 27960275 [TBL] [Abstract][Full Text] [Related]
66. Anti-Oxidant and digestive enzymes inhibitory based anti diabetic activity of crude and fractions of Carum carvi L. extracts. Wajidi M; Vaid FH; Rizwani GH; Faiyaz A; Shareef H; Akram A; Ahmed A Pak J Pharm Sci; 2019 Nov; 32(6):2687-2695. PubMed ID: 31969303 [TBL] [Abstract][Full Text] [Related]
67. Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. Ahmed M; Fatima H; Qasim M; Gul B; Ihsan-Ul-Haq BMC Complement Altern Med; 2017 Aug; 17(1):386. PubMed ID: 28774308 [TBL] [Abstract][Full Text] [Related]
68. Screening of antidiabetic and antioxidant activities of medicinal plants. Shori AB J Integr Med; 2015 Sep; 13(5):297-305. PubMed ID: 26343100 [TBL] [Abstract][Full Text] [Related]
69. The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Figueiredo-González M; Reboredo-Rodríguez P; González-Barreiro C; Carrasco-Pancorbo A; Cancho-Grande B; Simal-Gándara J Food Res Int; 2019 Feb; 116():447-454. PubMed ID: 30716967 [TBL] [Abstract][Full Text] [Related]
70. Antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit. Noreen S; Shaheen G; Akram M; Rashid A; Shah SM Pak J Pharm Sci; 2016 Jul; 29(4 Suppl):1383-5. PubMed ID: 27592488 [TBL] [Abstract][Full Text] [Related]
71. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Ranilla LG; Kwon YI; Apostolidis E; Shetty K Bioresour Technol; 2010 Jun; 101(12):4676-89. PubMed ID: 20185303 [TBL] [Abstract][Full Text] [Related]
72. Improved alpha-amylase and Helicobacter pylori inhibition by fenugreek extracts derived via solid-state bioconversion using Rhizopus oligosporus. Randhir R; Shetty K Asia Pac J Clin Nutr; 2007; 16(3):382-92. PubMed ID: 17704018 [TBL] [Abstract][Full Text] [Related]
73. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders. Raudone L; Raudonis R; Liaudanskas M; Viskelis J; Pukalskas A; Janulis V J Food Sci; 2016 May; 81(5):C1055-61. PubMed ID: 27002313 [TBL] [Abstract][Full Text] [Related]
74. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Rasouli H; Hosseini-Ghazvini SM; Adibi H; Khodarahmi R Food Funct; 2017 May; 8(5):1942-1954. PubMed ID: 28470323 [TBL] [Abstract][Full Text] [Related]
75. Inhibitory potential of prickly pears and their isolated bioactives against digestive enzymes linked to type 2 diabetes and inflammatory response. Gómez-Maqueo A; García-Cayuela T; Fernández-López R; Welti-Chanes J; Cano MP J Sci Food Agric; 2019 Nov; 99(14):6380-6391. PubMed ID: 31283026 [TBL] [Abstract][Full Text] [Related]
76. Inhibitory effect of Azadirachta indica A. juss leaf extract on the activities of alpha-amylase and alpha-glucosidase. Kazeem MI; Dansu TV; Adeola SA Pak J Biol Sci; 2013 Nov; 16(21):1358-62. PubMed ID: 24511747 [TBL] [Abstract][Full Text] [Related]
77. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Papoutsis K; Zhang J; Bowyer MC; Brunton N; Gibney ER; Lyng J Food Chem; 2021 Feb; 338():128119. PubMed ID: 33091976 [TBL] [Abstract][Full Text] [Related]
78. HPLC-QTOF-MS/MS profiling, antioxidant, and α-glucosidase inhibitory activities of Pyracantha fortuneana fruit extracts. Wang H; Ye YH; Wang HH; Liu J; Liu YJ; Jiang BW J Food Biochem; 2019 May; 43(5):e12821. PubMed ID: 31353511 [TBL] [Abstract][Full Text] [Related]
79. The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Yazdankhah S; Hojjati M; Azizi MH Plant Foods Hum Nutr; 2019 Mar; 74(1):149-155. PubMed ID: 30632080 [TBL] [Abstract][Full Text] [Related]
80. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase. Kam A; Li KM; Razmovski-Naumovski V; Nammi S; Shi J; Chan K; Li GQ Phytother Res; 2013 Nov; 27(11):1614-20. PubMed ID: 23280757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]