These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20626257)

  • 1. Investigations of roll-over shape: implications for design, alignment, and evaluation of ankle-foot prostheses and orthoses.
    Hansen AH; Childress DS
    Disabil Rehabil; 2010; 32(26):2201-9. PubMed ID: 20626257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roll-over shapes of the ankle-foot and knee-ankle-foot systems of able-bodied children.
    Hansen AH; Meier MR
    Clin Biomech (Bristol, Avon); 2010 Mar; 25(3):248-55. PubMed ID: 20015582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of able-bodied persons to changes in shoe rocker radius during walking: changes in ankle kinematics to maintain a consistent roll-over shape.
    Wang CC; Hansen AH
    J Biomech; 2010 Aug; 43(12):2288-93. PubMed ID: 20483413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roll-over shapes of human locomotor systems: effects of walking speed.
    Hansen AH; Childress DS; Knox EH
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):407-14. PubMed ID: 15109762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.
    Desloovere K; Molenaers G; Van Gestel L; Huenaerts C; Van Campenhout A; Callewaert B; Van de Walle P; Seyler J
    Gait Posture; 2006 Oct; 24(2):142-51. PubMed ID: 16934470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roll-over shapes of the able-bodied knee-ankle-foot system during gait initiation, steady-state walking, and gait termination.
    Miff SC; Hansen AH; Childress DS; Gard SA; Meier MR
    Gait Posture; 2008 Feb; 27(2):316-22. PubMed ID: 17544273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of manipulation of the center of pressure of the foot during gait on the activation patterns of the lower limb musculature.
    Goryachev Y; Debbi EM; Haim A; Wolf A
    J Electromyogr Kinesiol; 2011 Apr; 21(2):333-9. PubMed ID: 21215655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of rocker sole and SACH heel on kinematics in gait.
    Wu WL; Rosenbaum D; Su FC
    Med Eng Phys; 2004 Oct; 26(8):639-46. PubMed ID: 15471691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biomechanics and clinical efficacy of footwear adapted with rocker profiles--evidence in the literature.
    Hutchins S; Bowker P; Geary N; Richards J
    Foot (Edinb); 2009 Sep; 19(3):165-70. PubMed ID: 20307470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of alignment on the roll-over shapes of prosthetic feet.
    Hansen A
    Prosthet Orthot Int; 2008 Dec; 32(4):390-402. PubMed ID: 18985550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of being earnest about shank and thigh kinematics especially when using ankle-foot orthoses.
    Owen E
    Prosthet Orthot Int; 2010 Sep; 34(3):254-69. PubMed ID: 20738230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses.
    Schmalz T; Blumentritt S; Drewitz H; Freslier M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):631-9. PubMed ID: 16567026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design.
    Glaister BC; Schoen JA; Orendurff MS; Klute GK
    J Biomech Eng; 2009 Mar; 131(3):034501. PubMed ID: 19154072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the heel-to-toe rocker sole on walking in able-bodied persons.
    Arazpour M; Hutchins SW; Ghomshe FT; Shaky F; Karami MV; Aksenov AY
    Prosthet Orthot Int; 2013 Dec; 37(6):429-35. PubMed ID: 23401295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective rocker shapes used by able-bodied persons for walking and fore-aft swaying: implications for design of ankle-foot prostheses.
    Hansen AH; Wang CC
    Gait Posture; 2010 Jun; 32(2):181-4. PubMed ID: 20471833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.
    Sinitski EH; Hansen AH; Wilken JM
    J Biomech; 2012 Feb; 45(3):588-94. PubMed ID: 22177669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roll-over characteristics of human walking on inclined surfaces.
    Hansen AH; Childress DS; Miff SC
    Hum Mov Sci; 2004 Dec; 23(6):807-21. PubMed ID: 15664674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.