These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20626859)

  • 1. KID--an algorithm for fast and efficient text mining used to automatically generate a database containing kinetic information of enzymes.
    Heinen S; Thielen B; Schomburg D
    BMC Bioinformatics; 2010 Jul; 11():375. PubMed ID: 20626859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MPTM: A tool for mining protein post-translational modifications from literature.
    Sun D; Wang M; Li A
    J Bioinform Comput Biol; 2017 Oct; 15(5):1740005. PubMed ID: 28982288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA.
    Schomburg I; Chang A; Placzek S; Söhngen C; Rother M; Lang M; Munaretto C; Ulas S; Stelzer M; Grote A; Scheer M; Schomburg D
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D764-72. PubMed ID: 23203881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building a protein name dictionary from full text: a machine learning term extraction approach.
    Shi L; Campagne F
    BMC Bioinformatics; 2005 Apr; 6():88. PubMed ID: 15817129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways.
    Spasic I; Simeonidis E; Messiha HL; Paton NW; Kell DB
    Bioinformatics; 2009 Jun; 25(11):1404-11. PubMed ID: 19336445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRENDA in 2015: exciting developments in its 25th year of existence.
    Chang A; Schomburg I; Placzek S; Jeske L; Ulbrich M; Xiao M; Sensen CW; Schomburg D
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D439-46. PubMed ID: 25378310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.
    Ravikumar KE; Wagholikar KB; Li D; Kocher JP; Liu H
    BMC Bioinformatics; 2015 Jun; 16():185. PubMed ID: 26047637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iProLINK: an integrated protein resource for literature mining.
    Hu ZZ; Mani I; Hermoso V; Liu H; Wu CH
    Comput Biol Chem; 2004 Dec; 28(5-6):409-16. PubMed ID: 15556482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Guide to Dictionary-Based Text Mining.
    Cook HV; Jensen LJ
    Methods Mol Biol; 2019; 1939():73-89. PubMed ID: 30848457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.
    Sahadevan S; Hofmann-Apitius M; Schellander K; Tesfaye D; Fluck J; Friedrich CM
    J Anim Sci; 2012 Oct; 90(10):3666-76. PubMed ID: 22665627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a classification scheme for disease-related enzyme information.
    Söhngen C; Chang A; Schomburg D
    BMC Bioinformatics; 2011 Aug; 12():329. PubMed ID: 21827651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated extraction and semantic analysis of mutation impacts from the biomedical literature.
    Naderi N; Witte R
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S10. PubMed ID: 22759648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining.
    Hettne KM; Williams AJ; van Mulligen EM; Kleinjans J; Tkachenko V; Kors JA
    J Cheminform; 2010 Mar; 2(1):3. PubMed ID: 20331846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009.
    Chang A; Scheer M; Grote A; Schomburg I; Schomburg D
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D588-92. PubMed ID: 18984617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concept-based annotation of enzyme classes.
    Hofmann O; Schomburg D
    Bioinformatics; 2005 May; 21(9):2059-66. PubMed ID: 15661799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognizing names in biomedical texts: a machine learning approach.
    Zhou G; Zhang J; Su J; Shen D; Tan C
    Bioinformatics; 2004 May; 20(7):1178-90. PubMed ID: 14871877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IBDDB: a manually curated and text-mining-enhanced database of genes involved in inflammatory bowel disease.
    Khan F; Radovanovic A; Gojobori T; Kaur M
    Database (Oxford); 2021 Apr; 2021():. PubMed ID: 33929018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text.
    Pafilis E; Frankild SP; Fanini L; Faulwetter S; Pavloudi C; Vasileiadou A; Arvanitidis C; Jensen LJ
    PLoS One; 2013; 8(6):e65390. PubMed ID: 23823062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.