These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20626860)

  • 21. Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains.
    Tanghe A; Van Dijck P; Dumortier F; Teunissen A; Hohmann S; Thevelein JM
    Appl Environ Microbiol; 2002 Dec; 68(12):5981-9. PubMed ID: 12450819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.
    Lin X; Zhang CY; Bai XW; Xiao DG
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):939-48. PubMed ID: 25877163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.
    Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H
    Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Sun X; Zhang J; Fan ZH; Xiao P; Liu SN; Li RP; Zhu WB; Huang L
    J Agric Food Chem; 2019 Aug; 67(32):8986-8993. PubMed ID: 31347835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.
    Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leavening ability of baker's yeast exposed to hyperosmotic media.
    Hirasawa R; Yokoigawa K
    FEMS Microbiol Lett; 2001 Jan; 194(2):159-62. PubMed ID: 11164301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of a flour-free model dough system for throughput studies of baker's yeast.
    Panadero J; Randez-Gil F; Prieto JA
    Appl Environ Microbiol; 2005 Mar; 71(3):1142-7. PubMed ID: 15746311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of mal62-overexpression on leavening ability of baker's yeast].
    Sun X; Zhang C; Dong J; Wang G; Wu M; Xiao D
    Wei Sheng Wu Xue Bao; 2012 Sep; 52(9):1094-102. PubMed ID: 23236843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced leavening properties of baker's yeast overexpressing MAL62 with deletion of MIG1 in lean dough.
    Sun X; Zhang C; Dong J; Wu M; Zhang Y; Xiao D
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1533-9. PubMed ID: 22669197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing.
    Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T
    J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of GLC7 and REG1 deletion on maltose metabolism and leavening ability of baker's yeast in lean dough.
    Lin X; Zhang CY; Bai XW; Xiao DG
    J Biotechnol; 2015 Sep; 209():1-6. PubMed ID: 26073997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs.
    Teunissen A; Dumortier F; Gorwa MF; Bauer J; Tanghe A; Loïez A; Smet P; Van Dijck P; Thevelein JM
    Appl Environ Microbiol; 2002 Oct; 68(10):4780-7. PubMed ID: 12324320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic evidence that high noninduced maltase and maltose permease activities, governed by MALx3-encoded transcriptional regulators, determine efficiency of gas production by baker's yeast in unsugared dough.
    Higgins VJ; Braidwood M; Bell P; Bissinger P; Dawes IW; Attfield PV
    Appl Environ Microbiol; 1999 Feb; 65(2):680-5. PubMed ID: 9925600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary engineering to improve Wickerhamomyces subpelliculosus and Kazachstania gamospora for baking.
    Semumu T; Gamero A; Boekhout T; Zhou N
    World J Microbiol Biotechnol; 2022 Jan; 38(3):48. PubMed ID: 35089427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene expression analysis of cold and freeze stress in Baker's yeast.
    Rodriguez-Vargas S; Estruch F; Randez-Gil F
    Appl Environ Microbiol; 2002 Jun; 68(6):3024-30. PubMed ID: 12039763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.
    Ando A; Nakamura T
    J Biosci Bioeng; 2016 Oct; 122(4):441-5. PubMed ID: 27056577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.
    Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.