These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 20627123)

  • 21. Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification.
    Ohshima T; Koga H; Shimotohno K
    J Biol Chem; 2004 Jul; 279(28):29551-7. PubMed ID: 15123625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SUMO: From Bench to Bedside.
    Chang HM; Yeh ETH
    Physiol Rev; 2020 Oct; 100(4):1599-1619. PubMed ID: 32666886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Small-molecule inhibitors targeting small ubiquitin-like modifier pathway for the treatment of cancers and other diseases.
    Hua D; Wu X
    Eur J Med Chem; 2022 Apr; 233():114227. PubMed ID: 35247754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Cellular Processes by SUMO: Understudied Topics.
    Enserink JM
    Adv Exp Med Biol; 2017; 963():89-97. PubMed ID: 28197907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging roles of desumoylating enzymes.
    Kim JH; Baek SH
    Biochim Biophys Acta; 2009 Mar; 1792(3):155-62. PubMed ID: 19162180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUMO Modification Reverses Inhibitory Effects of Smad Nuclear Interacting Protein-1 in TGF-β Responses.
    Liu S; Long J; Yuan B; Zheng M; Xiao M; Xu J; Lin X; Feng XH
    J Biol Chem; 2016 Nov; 291(47):24418-24430. PubMed ID: 27703003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of cardiac transcription factor Gata6 by SUMO.
    Chen H; Sun W; Zhu J; Yuan H; Chu M; Wen B
    Biochimie; 2020 Mar; 170():212-218. PubMed ID: 32017966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SUMOylation in carcinogenesis.
    Bettermann K; Benesch M; Weis S; Haybaeck J
    Cancer Lett; 2012 Mar; 316(2):113-25. PubMed ID: 22138131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The function of SUMOylation and its crucial roles in the development of neurological diseases.
    Chen X; Zhang Y; Wang Q; Qin Y; Yang X; Xing Z; Shen Y; Wu H; Qi Y
    FASEB J; 2021 Apr; 35(4):e21510. PubMed ID: 33710677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition.
    Gareau JR; Lima CD
    Nat Rev Mol Cell Biol; 2010 Dec; 11(12):861-71. PubMed ID: 21102611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SUMOylation and Ubiquitylation Circuitry Controls Pregnane X Receptor Biology in Hepatocytes.
    Cui W; Sun M; Galeva N; Williams TD; Azuma Y; Staudinger JL
    Drug Metab Dispos; 2015 Sep; 43(9):1316-25. PubMed ID: 26063058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Role of Sumoylation in the Response to Hypoxia: An Overview.
    Filippopoulou C; Simos G; Chachami G
    Cells; 2020 Oct; 9(11):. PubMed ID: 33114748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small Ubiquitin-like Modifier Alters IFN Response.
    Maarifi G; Maroui MA; Dutrieux J; Dianoux L; Nisole S; Chelbi-Alix MK
    J Immunol; 2015 Sep; 195(5):2312-24. PubMed ID: 26223657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines.
    Jennewein C; Kuhn AM; Schmidt MV; Meilladec-Jullig V; von Knethen A; Gonzalez FJ; Brüne B
    J Immunol; 2008 Oct; 181(8):5646-52. PubMed ID: 18832723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2.
    Tripathi V; Chatterjee KS; Das R
    J Biol Chem; 2019 Oct; 294(40):14546-14561. PubMed ID: 31371453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Regulation of Chromatin by Dynamic SUMO Modifications.
    Wilson NR; Hochstrasser M
    Methods Mol Biol; 2016; 1475():23-38. PubMed ID: 27631795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function.
    Priyanka ; Kotiya D; Rana M; Subbarao N; Puri N; Tyagi RK
    Mol Cell Endocrinol; 2016 Jan; 420():194-207. PubMed ID: 26549688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific.
    Chang PC; Izumiya Y; Wu CY; Fitzgerald LD; Campbell M; Ellison TJ; Lam KS; Luciw PA; Kung HJ
    J Biol Chem; 2010 Feb; 285(8):5266-73. PubMed ID: 20034935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.