BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20627124)

  • 1. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.
    Orell A; Navarro CA; Arancibia R; Mobarec JC; Jerez CA
    Biotechnol Adv; 2010; 28(6):839-48. PubMed ID: 20627124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial copper resistance: importance in biohydrometallurgy.
    Martínez-Bussenius C; Navarro CA; Jerez CA
    Microb Biotechnol; 2017 Mar; 10(2):279-295. PubMed ID: 27790868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics, metagenomics and proteomics in biomining microorganisms.
    Valenzuela L; Chi A; Beard S; Orell A; Guiliani N; Shabanowitz J; Hunt DF; Jerez CA
    Biotechnol Adv; 2006; 24(2):197-211. PubMed ID: 16288845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese biomining: A review.
    Das AP; Sukla LB; Pradhan N; Nayak S
    Bioresour Technol; 2011 Aug; 102(16):7381-7. PubMed ID: 21632238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomining: metal recovery from ores with microorganisms.
    Schippers A; Hedrich S; Vasters J; Drobe M; Sand W; Willscher S
    Adv Biochem Eng Biotechnol; 2014; 141():1-47. PubMed ID: 23793914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.
    Orellana LH; Jerez CA
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):761-7. PubMed ID: 21789491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus.
    Orell A; Remonsellez F; Arancibia R; Jerez CA
    Archaea; 2013; 2013():289236. PubMed ID: 23509422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.
    Almárcegui RJ; Navarro CA; Paradela A; Albar JP; von Bernath D; Jerez CA
    J Proteome Res; 2014 Feb; 13(2):946-60. PubMed ID: 24380576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophilic microorganisms in biomining.
    Donati ER; Castro C; Urbieta MS
    World J Microbiol Biotechnol; 2016 Nov; 32(11):179. PubMed ID: 27628339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.
    Navarro CA; Orellana LH; Mauriaca C; Jerez CA
    Appl Environ Microbiol; 2009 Oct; 75(19):6102-9. PubMed ID: 19666734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.
    Johnson DB
    Curr Opin Biotechnol; 2014 Dec; 30():24-31. PubMed ID: 24794631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring bacterial community shifts in bioleaching of Ni-Cu sulfide.
    He Z; Zhao J; Gao F; Hu Y; Qiu G
    Bioresour Technol; 2010 Nov; 101(21):8287-93. PubMed ID: 20624605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China.
    Xie X; Xiao S; He Z; Liu J; Qiu G
    J Appl Microbiol; 2007 Oct; 103(4):1227-38. PubMed ID: 17897227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms.
    Cárdenas JP; Valdés J; Quatrini R; Duarte F; Holmes DS
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):605-20. PubMed ID: 20697707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations.
    Ramos-Zúñiga J; Gallardo S; Martínez-Bussenius C; Norambuena R; Navarro CA; Paradela A; Jerez CA
    J Proteomics; 2019 Apr; 198():132-144. PubMed ID: 30553947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries.
    Olson GJ; Brierley JA; Brierley CL
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):249-57. PubMed ID: 14566430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur.
    Vargas-Straube MJ; Beard S; Norambuena R; Paradela A; Vera M; Jerez CA
    J Proteomics; 2020 Aug; 225():103874. PubMed ID: 32569817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
    Brierley CL; Brierley JA
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7543-52. PubMed ID: 23877580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism.
    Remonsellez F; Orell A; Jerez CA
    Microbiology (Reading); 2006 Jan; 152(Pt 1):59-66. PubMed ID: 16385115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.