These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20627508)

  • 21. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler.
    Li Z; Zhao W; Li R; Wang Z; Li Y; Zhao G
    Bioresour Technol; 2009 Apr; 100(7):2278-83. PubMed ID: 19091555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed.
    Tao L; Zhao G; Sun R; Wang Q
    J Hazard Mater; 2010 Sep; 181(1-3):305-14. PubMed ID: 20570042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ash content on the combustion process of simulated MSW in the fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    Waste Manag; 2016 Feb; 48():236-249. PubMed ID: 26476592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and kinetic modeling of oxygen-enriched air combustion of paper mill sludge.
    Liu K; Ma XQ; Xiao HM
    Waste Manag; 2010 Jul; 30(7):1206-11. PubMed ID: 20392627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    J Environ Manage; 2015 Jul; 157():111-7. PubMed ID: 25897505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace.
    Ni M; Xiao H; Chi Y; Yan J; Buekens A; Jin Y; Lu S
    Waste Manag; 2012 Mar; 32(3):568-74. PubMed ID: 22137319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass balance for POPs in hazardous and municipal solid waste incinerators.
    Van Caneghem J; Block C; Van Brecht A; Wauters G; Vandecasteele C
    Chemosphere; 2010 Feb; 78(6):701-8. PubMed ID: 20022623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low SO2 emission from CFB co-firing MSW and bituminous.
    Lu QG; Li ZW; Na YJ; Ba SL; Sun YK; He J
    J Environ Sci (China); 2004; 16(5):821-4. PubMed ID: 15559820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical assessment of the CLEERGAS moving grate-based process for energy generation from municipal solid waste.
    Lusardi MR; Kohn M; Themelis NJ; Castaldi MJ
    Waste Manag Res; 2014 Aug; 32(8):772-81. PubMed ID: 25096323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-fluid model simulation of an industrial moving grate waste incinerator.
    Xia Z; Shan P; Chen C; Du H; Huang J; Bai L
    Waste Manag; 2020 Mar; 104():183-191. PubMed ID: 31981819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emissions investigation for a novel medical waste incinerator.
    Xie R; Li WJ; Li J; Wu BL; Yi JQ
    J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case.
    Vandecasteele C; Wauters G; Arickx S; Jaspers M; Van Gerven T
    Waste Manag; 2007; 27(10):1366-75. PubMed ID: 17049223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    Waste Manag; 2015 May; 39():166-78. PubMed ID: 25746177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modelling of MSW incineration on a travelling bed.
    Yang YB; Goh YR; Zakaria R; Nasserzadeh V; Swithenbank J
    Waste Manag; 2002; 22(4):369-80. PubMed ID: 12099494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.
    Shaaban AF
    J Hazard Mater; 2007 Jun; 145(1-2):195-202. PubMed ID: 17166659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of the Mahalanobis distance on evaluating the overall performance of moving-grate incineration of municipal solid waste.
    Tao H; He P; Wang Z; Sun W
    Environ Monit Assess; 2018 Apr; 190(5):284. PubMed ID: 29658068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model predictive control as a tool for improving the process operation of MSW combustion plants.
    Leskens M; van Kessel LB; Bosgra OH
    Waste Manag; 2005; 25(8):788-98. PubMed ID: 15896951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.