These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20627508)

  • 41. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China.
    Chen L; Liu M; Fan R; Ma S; Xu Z; Ren M; He Q
    Sci Total Environ; 2013 Mar; 447():396-402. PubMed ID: 23410861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator.
    Wang J; Xue Y; Zhang X; Shu X
    Waste Manag; 2015 Oct; 44():116-24. PubMed ID: 26233882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective incineration technology with a new-type rotary waste incinerator.
    Chen LQ; Zhu JZ; Cai MZ; Xie XY
    J Environ Sci (China); 2003 Nov; 15(6):768-72. PubMed ID: 14758894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.
    Udomsri S; Martin AR; Fransson TH
    Waste Manag; 2010 Jul; 30(7):1414-22. PubMed ID: 20207531
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probabilistic and technology-specific modeling of emissions from municipal solid-waste incineration.
    Koehler A; Peyer F; Salzmann C; Saner D
    Environ Sci Technol; 2011 Apr; 45(8):3487-95. PubMed ID: 21410192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland.
    Harris E; Zeyer K; Kegel R; Müller B; Emmenegger L; Mohn J
    Waste Manag; 2015 Jan; 35():135-40. PubMed ID: 25458765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics.
    Duan F; Chyang C; Wen J; Tso J
    J Environ Sci (China); 2013 Sep; 25(9):1841-6. PubMed ID: 24520727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres.
    Tang Y; Ma X; Lai Z
    Bioresour Technol; 2011 Jan; 102(2):1879-85. PubMed ID: 20817514
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A study on toxic organic emissions from batch combustion of styrene.
    Westblad C; Levendis YA; Richter H; Howard JB; Carlson J
    Chemosphere; 2002 Oct; 49(4):395-412. PubMed ID: 12365837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.
    Biganzoli L; Grosso M; Giugliano M; Campolunghi M
    Waste Manag Res; 2012 Oct; 30(10):1081-8. PubMed ID: 22584266
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.
    Park S; Choi JH; Park J
    Waste Manag; 2011 Aug; 31(8):1765-71. PubMed ID: 21478007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.
    Chen HW; Chang NB; Chen JC; Tsai SJ
    Waste Manag; 2010 Jul; 30(7):1371-81. PubMed ID: 20181468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.
    Yi S; Yoo KY; Hanaki K
    Waste Manag; 2011 Mar; 31(3):595-602. PubMed ID: 20933381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.
    Ren F; Li Z; Chen Z; Fan S; Liu G
    Environ Sci Technol; 2010 Aug; 44(16):6510-6. PubMed ID: 20666359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gaseous emissions from waste combustion.
    Werther J
    J Hazard Mater; 2007 Jun; 144(3):604-13. PubMed ID: 17339077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres.
    Lai Z; Ma X; Tang Y; Lin H; Chen Y
    Bioresour Technol; 2012 Mar; 107():444-50. PubMed ID: 22209440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.
    Soria J; Gauthier D; Falcoz Q; Flamant G; Mazza G
    J Hazard Mater; 2013 Mar; 248-249():276-84. PubMed ID: 23410804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.
    Fan Y; Zhang FS; Zhu J; Liu Z
    J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.