BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 20627511)

  • 1. Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior.
    Rubenwolf S; Strohmeier O; Kloke A; Kerzenmacher S; Zengerle R; von Stetten F
    Biosens Bioelectron; 2010 Oct; 26(2):841-5. PubMed ID: 20627511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction.
    Hussein L; Rubenwolf S; von Stetten F; Urban G; Zengerle R; Krueger M; Kerzenmacher S
    Biosens Bioelectron; 2011 Jun; 26(10):4133-8. PubMed ID: 21543222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular design of laccase cathode for direct electron transfer in a biofuel cell.
    Martinez-Ortiz J; Flores R; Vazquez-Duhalt R
    Biosens Bioelectron; 2011 Jan; 26(5):2626-31. PubMed ID: 21145724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor.
    Gallaway J; Wheeldon I; Rincon R; Atanassov P; Banta S; Barton SC
    Biosens Bioelectron; 2008 Mar; 23(8):1229-35. PubMed ID: 18096378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid biobattery based on arylated carbon nanotubes and laccase.
    Stolarczyk K; Sepelowska M; Lyp D; Zelechowska K; Biernat JF; Rogalski J; Farmer KD; Roberts KN; Bilewicz R
    Bioelectrochemistry; 2012 Oct; 87():154-63. PubMed ID: 22078125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma functionalized carbon electrode for laccase-catalyzed oxygen reduction by direct electron transfer.
    Ardhaoui M; Zheng M; Pulpytel J; Dowling D; Jolivalt C; Khonsari FA
    Bioelectrochemistry; 2013 Jun; 91():52-61. PubMed ID: 23416361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electron transfer reactions of laccases from different origins on carbon electrodes.
    Shleev S; Jarosz-Wilkolazka A; Khalunina A; Morozova O; Yaropolov A; Ruzgas T; Gorton L
    Bioelectrochemistry; 2005 Sep; 67(1):115-24. PubMed ID: 15941673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Bioelectrochemistry; 2012 Oct; 87():172-7. PubMed ID: 22200380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum.
    González Arzola K; Gimeno Y; Arévalo MC; Falcón MA; Hernández Creus A
    Bioelectrochemistry; 2010 Aug; 79(1):17-24. PubMed ID: 19854115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of laccase for improved cathode biofuel cell performances.
    Zheng M; Griveau S; Dupont-Gillain C; Genet MJ; Jolivalt C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):77-87. PubMed ID: 26166133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design.
    Rincón RA; Lau C; Luckarift HR; Garcia KE; Adkins E; Johnson GR; Atanassov P
    Biosens Bioelectron; 2011 Sep; 27(1):132-6. PubMed ID: 21775124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal.
    Rubenwolf S; Sané S; Hussein L; Kestel J; von Stetten F; Urban G; Krueger M; Zengerle R; Kerzenmacher S
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):841-9. PubMed ID: 22968354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes.
    Arrocha AA; Cano-Castillo U; Aguila SA; Vazquez-Duhalt R
    Biosens Bioelectron; 2014 Nov; 61():569-74. PubMed ID: 24953844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.
    Engel AB; Cherifi A; Tingry S; Cornu D; Peigney A; Laurent Ch
    Nanotechnology; 2013 Jun; 24(24):245402. PubMed ID: 23702912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen.
    Carbajosa S; Malki M; Caillard R; Lopez MF; Palomares FJ; Martín-Gago JA; Rodríguez N; Amils R; Fernández VM; De Lacey AL
    Biosens Bioelectron; 2010 Oct; 26(2):877-80. PubMed ID: 20678913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition.
    Vaz-Dominguez C; Campuzano S; Rüdiger O; Pita M; Gorbacheva M; Shleev S; Fernandez VM; De Lacey AL
    Biosens Bioelectron; 2008 Dec; 24(4):531-7. PubMed ID: 18585029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.