These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20628462)

  • 1. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays.
    Svrček V; Turkevych I; Kondo M
    Nanoscale Res Lett; 2009 Aug; 4(11):1389-94. PubMed ID: 20628462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered titanium dioxide nanotubes filled with photoluminescent surfactant-free silicon nanocrystals.
    Svrcek V; Turkevych I; Hara K; Kondo M
    Nanotechnology; 2010 May; 21(21):215203. PubMed ID: 20431204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.
    Liu CY; Kortshagen UR
    Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and properties of nano-confined poly(3-hexylthiophene) in nano-array/polymer hybrid ordered-bulk heterojunction solar cells.
    Foong TR; Chan KL; Hu X
    Nanoscale; 2012 Jan; 4(2):478-85. PubMed ID: 22095025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals.
    Yen YT; Lin YK; Chang SH; Hong HF; Tuan HY; Chueh YL
    Nanoscale Res Lett; 2013 Jul; 8(1):329. PubMed ID: 23870036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient inverted solar cells using TiO(2) nanotube arrays.
    Yu BY; Tsai A; Tsai SP; Wong KT; Yang Y; Chu CW; Shyue JJ
    Nanotechnology; 2008 Jun; 19(25):255202. PubMed ID: 21828647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.
    Yao S; Chen Z; Li F; Xu B; Song J; Yan L; Jin G; Wen S; Wang C; Yang B; Tian W
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7146-52. PubMed ID: 25781480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite.
    Chen L; Pan X; Zheng D; Gao Y; Jiang X; Xu M; Chen H
    Nanotechnology; 2010 Aug; 21(34):345201. PubMed ID: 20671361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(3-hexylthiophene) (P3HT) and Phenyl-C61-Butyric Acid Methyl Ester (PC61BM) Based Bulk Heterojunction Solar Cells Containing Silica and Titanium Dioxide Nanorods: Molecular Dynamics Simulations.
    Garg M; Padmanabhan V
    J Nanosci Nanotechnol; 2020 Feb; 20(2):858-870. PubMed ID: 31383081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(3-hexylthiophene) nanotube array surfaces with tunable wetting and contact thermal energy transport.
    Smith MK; Singh V; Kalaitzidou K; Cola BA
    ACS Nano; 2015 Feb; 9(2):1080-8. PubMed ID: 25584684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid solar cells from P3HT and silicon nanocrystals.
    Liu CY; Holman ZC; Kortshagen UR
    Nano Lett; 2009 Jan; 9(1):449-52. PubMed ID: 19113966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening.
    Yoriya S; Grimes CA
    Langmuir; 2010 Jan; 26(1):417-20. PubMed ID: 20038179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical grafting of poly(3,4-ethylenedioxythiophene) into a titanium dioxide nanotube host network.
    Janáky C; Bencsik G; Rácz A; Visy C; de Tacconi NR; Chanmanee W; Rajeshwar K
    Langmuir; 2010 Aug; 26(16):13697-702. PubMed ID: 20695622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells.
    Pirashanthan A; Kajana T; Velauthapillai D; Shivatharsiny Y; Bentouba S; Ravirajan P
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Charge Transport Study of MEHPPV-TiO₂ and P3HT-TiO₂ Nanocomposites for Hybrid Bulk Heterojunction Solar Cells.
    Kumar S; Sharma SN; Kumar J
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3408-3419. PubMed ID: 30744768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Absorption and Luminescence Quenching Properties of Hybrid Bulk Heterojunction Materials Based on the Blend Conducting Polymers.
    Nam Nguyen PH; Nguyen ND; Le TH; Ngo TT
    J Nanosci Nanotechnol; 2017 Jan; 17(1):450-53. PubMed ID: 29624301
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Lee WH; Lai CW; Hamid SBA
    Materials (Basel); 2015 Aug; 8(9):5702-5714. PubMed ID: 28793530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.