These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20628549)

  • 1. AUTOMATED COMPARISON OF PROTEIN SUBCELLULAR LOCATION PATTERNS BETWEEN IMAGES OF NORMAL AND CANCEROUS TISSUES.
    Glory E; Newberg J; Murphy RF
    Proc IEEE Int Symp Biomed Imaging; 2008; 4540993():304-307. PubMed ID: 20628549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for the automated analysis of subcellular patterns in human protein atlas images.
    Newberg J; Murphy RF
    J Proteome Res; 2008 Jun; 7(6):2300-8. PubMed ID: 18435555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Graphical Model to Determine the Subcellular Protein Location in Artificial Tissues.
    Glory-Afshar E; Osuna-Highley E; Granger B; Murphy RF
    Proc IEEE Int Symp Biomed Imaging; 2010 Apr; 2010():1037-1040. PubMed ID: 21625289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated interpretation of protein subcellular location patterns: implications for early cancer detection and assessment.
    Murphy RF
    Ann N Y Acad Sci; 2004 May; 1020():124-31. PubMed ID: 15208189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics.
    Huang K; Murphy RF
    BMC Bioinformatics; 2004 Jun; 5():78. PubMed ID: 15207009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers.
    Kumar A; Rao A; Bhavani S; Newberg JY; Murphy RF
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18249-54. PubMed ID: 25489103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images.
    Xu YY; Shen HB; Murphy RF
    Bioinformatics; 2020 Mar; 36(6):1908-1914. PubMed ID: 31722369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective clustering of proteins based on subcellular location patterns.
    Chen X; Murphy RF
    J Biomed Biotechnol; 2005 Jun; 2005(2):87-95. PubMed ID: 16046813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated classification of protein subcellular localization in immunohistochemistry images to reveal biomarkers in colon cancer.
    Xue ZZ; Wu Y; Gao QZ; Zhao L; Xu YY
    BMC Bioinformatics; 2020 Sep; 21(1):398. PubMed ID: 32907537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images.
    Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D
    J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas.
    Li J; Newberg JY; Uhlén M; Lundberg E; Murphy RF
    PLoS One; 2012; 7(11):e50514. PubMed ID: 23226299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Analysis of Human Protein Atlas Immunofluorescence Images.
    Newberg JY; Li J; Rao A; Pontén F; Uhlén M; Lundberg E; Murphy RF
    Proc IEEE Int Symp Biomed Imaging; 2009; 5193229():1023-1026. PubMed ID: 20628548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated learning of generative models for subcellular location: building blocks for systems biology.
    Zhao T; Murphy RF
    Cytometry A; 2007 Dec; 71(12):978-90. PubMed ID: 17972315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells.
    Boland MV; Murphy RF
    Bioinformatics; 2001 Dec; 17(12):1213-23. PubMed ID: 11751230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location proteomics: systematic determination of protein subcellular location.
    Newberg J; Hua J; Murphy RF
    Methods Mol Biol; 2009; 500():313-32. PubMed ID: 19399439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a systematics for protein subcelluar location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images.
    Murphy RF; Boland MV; Velliste M
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():251-9. PubMed ID: 10977086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated interpretation of subcellular patterns from immunofluorescence microscopy.
    Hu Y; Murphy RF
    J Immunol Methods; 2004 Jul; 290(1-2):93-105. PubMed ID: 15261574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach.
    Romeo V; Maurea S; Cuocolo R; Petretta M; Mainenti PP; Verde F; Coppola M; Dell'Aversana S; Brunetti A
    J Magn Reson Imaging; 2018 Jul; 48(1):198-204. PubMed ID: 29341325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.