These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2062880)
1. Resonance Raman spectra of bacteriorhodopsin mutants with substitutions at Asp-85, Asp-96, and Arg-82. Lin SW; Fodor SP; Miercke LJ; Shand RF; Betlach MC; Stroud RM; Mathies RA Photochem Photobiol; 1991 Mar; 53(3):341-6. PubMed ID: 2062880 [TBL] [Abstract][Full Text] [Related]
2. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A. Rath P; Marti T; Sonar S; Khorana HG; Rothschild KJ J Biol Chem; 1993 Aug; 268(24):17742-9. PubMed ID: 8349659 [TBL] [Abstract][Full Text] [Related]
4. Anion binding to the Schiff base of the bacteriorhodopsin mutants Asp-85----Asn/Asp-212----Asn and Arg-82----Gln/Asp-85----Asn/Asp-212----Asn. Marti T; Otto H; Rösselet SJ; Heyn MP; Khorana HG J Biol Chem; 1992 Aug; 267(24):16922-7. PubMed ID: 1512233 [TBL] [Abstract][Full Text] [Related]
5. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Duñach M; Marti T; Khorana HG; Rothschild KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9873-7. PubMed ID: 2263638 [TBL] [Abstract][Full Text] [Related]
6. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
7. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
8. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400 [TBL] [Abstract][Full Text] [Related]
9. Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin. Coleman M; Nilsson A; Russell TS; Rath P; Pandey R; Rothschild KJ Biochemistry; 1995 Nov; 34(47):15599-606. PubMed ID: 7492563 [TBL] [Abstract][Full Text] [Related]
10. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence for the interaction of aspartic acid 212 with tyrosine 185 and possible role in the proton pump mechanism. Rothschild KJ; Braiman MS; He YW; Marti T; Khorana HG J Biol Chem; 1990 Oct; 265(28):16985-91. PubMed ID: 2211604 [TBL] [Abstract][Full Text] [Related]
11. Hydration of the counterion of the Schiff base in the chloride-transporting mutant of bacteriorhodopsin: FTIR and FT-raman studies of the effects of anion binding when Asp85 is replaced with a neutral residue. Chon YS; Sasaki J; Kandori H; Brown LS; Lanyi JK; Needleman R; Maeda A Biochemistry; 1996 Nov; 35(45):14244-50. PubMed ID: 8916909 [TBL] [Abstract][Full Text] [Related]
12. The retinylidene Schiff base counterion in bacteriorhodopsin. Marti T; Rösselet SJ; Otto H; Heyn MP; Khorana HG J Biol Chem; 1991 Oct; 266(28):18674-83. PubMed ID: 1917991 [TBL] [Abstract][Full Text] [Related]
13. Local-access model for proton transfer in bacteriorhodopsin. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720 [TBL] [Abstract][Full Text] [Related]
14. Complete identification of C = O stretching vibrational bands of protonated aspartic acid residues in the difference infrared spectra of M and N intermediates versus bacteriorhodopsin. Sasaki J; Lanyi JK; Needleman R; Yoshizawa T; Maeda A Biochemistry; 1994 Mar; 33(11):3178-84. PubMed ID: 8136352 [TBL] [Abstract][Full Text] [Related]
15. Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator. Tanio M; Tuzi S; Yamaguchi S; Kawaminami R; Naito A; Needleman R; Lanyi JK; Saitô H Biophys J; 1999 Sep; 77(3):1577-84. PubMed ID: 10465768 [TBL] [Abstract][Full Text] [Related]
16. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M; Kandori H Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984 [TBL] [Abstract][Full Text] [Related]
17. Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Subramaniam S; Marti T; Khorana HG Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1013-7. PubMed ID: 1967832 [TBL] [Abstract][Full Text] [Related]
18. Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy. Fodor SP; Gebhard R; Lugtenburg J; Bogomolni RA; Mathies RA J Biol Chem; 1989 Nov; 264(31):18280-3. PubMed ID: 2808377 [TBL] [Abstract][Full Text] [Related]
19. Wild-type and mutant bacteriorhodopsins D85N, D96N, and R82Q: purification to homogeneity, pH dependence of pumping, and electron diffraction. Miercke LJ; Betlach MC; Mitra AK; Shand RF; Fong SK; Stroud RM Biochemistry; 1991 Mar; 30(12):3088-98. PubMed ID: 1848786 [TBL] [Abstract][Full Text] [Related]