These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20628841)
1. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR. Shimizu H; Yu YC; Kono K; Kubota T; Yasui M; Li M; Hwang TC; Sohma Y J Physiol Sci; 2010 Sep; 60(5):353-62. PubMed ID: 20628841 [TBL] [Abstract][Full Text] [Related]
2. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
3. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
4. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
5. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. Jih KY; Sohma Y; Hwang TC J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014 [TBL] [Abstract][Full Text] [Related]
6. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
7. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. Bompadre SG; Li M; Hwang TC J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357 [TBL] [Abstract][Full Text] [Related]
9. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. Bompadre SG; Sohma Y; Li M; Hwang TC J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351 [TBL] [Abstract][Full Text] [Related]
10. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2. Szollosi A; Vergani P; Csanády L J Gen Physiol; 2010 Oct; 136(4):407-23. PubMed ID: 20876359 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
12. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation. Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716 [TBL] [Abstract][Full Text] [Related]
13. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis. Yeh JT; Yu YC; Hwang TC J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177 [TBL] [Abstract][Full Text] [Related]
14. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. Wang W; Roessler BC; Kirk KL J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805 [TBL] [Abstract][Full Text] [Related]
15. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator. Yu YC; Sohma Y; Hwang TC J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474 [TBL] [Abstract][Full Text] [Related]
16. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
17. State-dependent modulation of CFTR gating by pyrophosphate. Tsai MF; Shimizu H; Sohma Y; Li M; Hwang TC J Gen Physiol; 2009 Apr; 133(4):405-19. PubMed ID: 19332621 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075 [TBL] [Abstract][Full Text] [Related]
19. Control of the CFTR channel's gates. Vergani P; Basso C; Mense M; Nairn AC; Gadsby DC Biochem Soc Trans; 2005 Nov; 33(Pt 5):1003-7. PubMed ID: 16246032 [TBL] [Abstract][Full Text] [Related]
20. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]