These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 20628908)

  • 41. Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction.
    Guo HD; Cui GH; Wang HJ; Tan YZ
    Biochem Biophys Res Commun; 2010 Aug; 399(1):42-8. PubMed ID: 20637726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration.
    Yaguchi A; Oshikawa M; Watanabe G; Hiramatsu H; Uchida N; Hara C; Kaneko N; Sawamoto K; Muraoka T; Ajioka I
    Nat Commun; 2021 Nov; 12(1):6623. PubMed ID: 34799548
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Slow and sustained release of active cytokines from self-assembling peptide scaffolds.
    Gelain F; Unsworth LD; Zhang S
    J Control Release; 2010 Aug; 145(3):231-9. PubMed ID: 20447427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration.
    Jin G; Prabhakaran MP; Kai D; Ramakrishna S
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):689-98. PubMed ID: 23791682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparison of fibrin, agarose and gellan gum hydrogels as carriers of stem cells and growth factor delivery microspheres for cartilage regeneration.
    Ahearne M; Kelly DJ
    Biomed Mater; 2013 Jun; 8(3):035004. PubMed ID: 23532058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local delivery of proteins and the use of self-assembling peptides.
    Segers VF; Lee RT
    Drug Discov Today; 2007 Jul; 12(13-14):561-8. PubMed ID: 17631251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A self-assembling peptide hydrogel-based drug co-delivery platform to improve tissue repair after ischemia-reperfusion injury.
    Liu S; Zhao M; Zhou Y; Li L; Wang C; Yuan Y; Li L; Liao G; Bresette W; Chen Y; Cheng J; Lu Y; Liu J
    Acta Biomater; 2020 Feb; 103():102-114. PubMed ID: 31843715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration.
    Guo B; Qu J; Zhao X; Zhang M
    Acta Biomater; 2019 Jan; 84():180-193. PubMed ID: 30528606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly angiogenic peptide nanofibers.
    Kumar VA; Taylor NL; Shi S; Wang BK; Jalan AA; Kang MK; Wickremasinghe NC; Hartgerink JD
    ACS Nano; 2015 Jan; 9(1):860-8. PubMed ID: 25584521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drug-eluting scaffolds for bone and cartilage regeneration.
    Huang CL; Lee WL; Loo JS
    Drug Discov Today; 2014 Jun; 19(6):714-24. PubMed ID: 24239726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of an injectable functionalized self-assembling nanopeptide hydrogel on angiogenesis and neurogenesis for regeneration of the central nervous system.
    Wang TW; Chang KC; Chen LH; Liao SY; Yeh CW; Chuang YJ
    Nanoscale; 2017 Nov; 9(42):16281-16292. PubMed ID: 29046917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-assembling peptide-based delivery of therapeutics for myocardial infarction.
    Boopathy AV; Davis ME
    Methods Mol Biol; 2014; 1141():159-64. PubMed ID: 24567138
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peptide Nanomaterials for Drug Delivery Applications.
    Pentlavalli S; Coulter S; Laverty G
    Curr Protein Pept Sci; 2020; 21(4):401-412. PubMed ID: 31893991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioadhesive microspheres as a controlled drug delivery system.
    Vasir JK; Tambwekar K; Garg S
    Int J Pharm; 2003 Apr; 255(1-2):13-32. PubMed ID: 12672598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release.
    Wang W; Dang M; Zhang Z; Hu J; Eyster TW; Ni L; Ma PX
    Acta Biomater; 2016 May; 36():63-72. PubMed ID: 26971664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.
    Uzunalli G; Soran Z; Erkal TS; Dagdas YS; Dinc E; Hondur AM; Bilgihan K; Aydin B; Guler MO; Tekinay AB
    Acta Biomater; 2014 Mar; 10(3):1156-66. PubMed ID: 24334145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels.
    DeFail AJ; Chu CR; Izzo N; Marra KG
    Biomaterials; 2006 Mar; 27(8):1579-85. PubMed ID: 16140372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications.
    Pugliese R; Maleki M; Zuckermann RN; Gelain F
    Biomater Sci; 2018 Dec; 7(1):76-91. PubMed ID: 30475373
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanofiber-based transforming growth factor-β3 release induces fibrochondrogenic differentiation of stem cells.
    Qu D; Zhu JP; Childs HR; Lu HH
    Acta Biomater; 2019 Jul; 93():111-122. PubMed ID: 30862549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradable polymers for electrospinning: towards biomedical applications.
    Kai D; Liow SS; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():659-70. PubMed ID: 25491875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.