BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20629021)

  • 1. Hemocompatibility of titania nanotube arrays.
    Smith BS; Yoriya S; Grissom L; Grimes CA; Popat KC
    J Biomed Mater Res A; 2010 Nov; 95(2):350-60. PubMed ID: 20629021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays.
    Smith BS; Yoriya S; Johnson T; Popat KC
    Acta Biomater; 2011 Jun; 7(6):2686-96. PubMed ID: 21414425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces.
    Sabino RM; Kauk K; Movafaghi S; Kota A; Popat KC
    Nanomedicine; 2019 Oct; 21():102046. PubMed ID: 31279063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titania nanotube arrays as interfaces for blood-contacting implantable devices: a study evaluating the nanotopography-associated activation and expression of blood plasma components.
    Smith BS; Popat KC
    J Biomed Nanotechnol; 2012 Aug; 8(4):642-58. PubMed ID: 22852474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation.
    Dias-Netipanyj MF; Cowden K; Sopchenski L; Cogo SC; Elifio-Esposito S; Popat KC; Soares P
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109850. PubMed ID: 31349471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins.
    Yu WQ; Qiu J; Zhang FQ
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):400-5. PubMed ID: 21377339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors.
    Gong Z; Hu Y; Gao F; Quan L; Liu T; Gong T; Pan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110521. PubMed ID: 31569001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of crystalline phase changes in titania (TiO
    Zhang L; Liao X; Fok A; Ning C; Ng P; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():91-101. PubMed ID: 29025678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells.
    Wu S; Zhang D; Bai J; Zheng H; Deng J; Gou Z; Gao C
    J Biomed Mater Res A; 2020 Nov; 108(11):2305-2318. PubMed ID: 32363805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.
    Yu WQ; Zhang YL; Jiang XQ; Zhang FQ
    Oral Dis; 2010 Oct; 16(7):624-30. PubMed ID: 20604877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.
    Chu CL; Hu T; Wu SL; Dong YS; Yin LH; Pu YP; Lin PH; Chung CY; Yeung KW; Chu PK
    Acta Biomater; 2007 Sep; 3(5):795-806. PubMed ID: 17466609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage.
    Roy SC; Paulose M; Grimes CA
    Biomaterials; 2007 Nov; 28(31):4667-72. PubMed ID: 17692372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers.
    Sabino RM; Kauk K; Madruga LYC; Kipper MJ; Martins AF; Popat KC
    J Biomed Mater Res A; 2020 Apr; 108(4):992-1005. PubMed ID: 31909867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical titania nanotubes with self-branched crystalline nanorods.
    Bae C; Yoon Y; Yoon WS; Moon J; Kim J; Shin H
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1581-7. PubMed ID: 20527769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of CO-releasing surface to enhance the blood compatibility and endothelialization of TiO
    Ma W; Liu X; Yang M; Hong Q; Meng L; Zhang Q; Chen J; Pan C
    Biomater Adv; 2023 Jun; 149():213393. PubMed ID: 36966654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood-biomaterial interactions in a flow system in the presence of bacteria: effect of protein adsorption.
    Sapatnekar S; Kieswetter KM; Merritt K; Anderson JM; Cahalan L; Verhoeven M; Hendriks M; Fouache B; Cahalan P
    J Biomed Mater Res; 1995 Feb; 29(2):247-56. PubMed ID: 7738073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced charge storage by the electrocatalytic effect of anodic TiO₂ nanotubes.
    Zhang G; Huang C; Zhou L; Ye L; Li W; Huang H
    Nanoscale; 2011 Oct; 3(10):4174-81. PubMed ID: 21858346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.