These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20629703)

  • 1. The effect of agrochemicals on indicator bacteria densities in outdoor mesocosms.
    Staley ZR; Rohr JR; Harwood VJ
    Environ Microbiol; 2010 Dec; 12(12):3150-8. PubMed ID: 20629703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Test of direct and indirect effects of agrochemicals on the survival of fecal indicator bacteria.
    Staley ZR; Rohr JR; Harwood VJ
    Appl Environ Microbiol; 2011 Dec; 77(24):8765-74. PubMed ID: 22003017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrochemicals indirectly increase survival of E. coli O157:H7 and indicator bacteria by reducing ecosystem services.
    Staley ZR; Rohr JR; Senkbeil JK; Harwood VJ
    Ecol Appl; 2014; 24(8):1945-53. PubMed ID: 29185664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria.
    Staley ZR; Senkbeil JK; Rohr JR; Harwood VJ
    Appl Environ Microbiol; 2012 Nov; 78(22):8146-50. PubMed ID: 22961900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments.
    Anderson KL; Whitlock JE; Harwood VJ
    Appl Environ Microbiol; 2005 Jun; 71(6):3041-8. PubMed ID: 15933000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation.
    Badgley BD; Thomas FI; Harwood VJ
    Environ Microbiol; 2011 Apr; 13(4):932-42. PubMed ID: 21208357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa.
    Abia AL; Ubomba-Jaswa E; Momba MN
    Sci Total Environ; 2015 Dec; 537():462-9. PubMed ID: 26318680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the importance of faecal sources in human-impacted waters.
    Schoen ME; Soller JA; Ashbolt NJ
    Water Res; 2011 Apr; 45(8):2670-80. PubMed ID: 21429551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining and urban impacts on semi-arid freshwater aquatic systems: the example of Mount Isa, Queensland.
    Taylor MP; Mackay A; Kuypers T; Hudson-Edwards K
    J Environ Monit; 2009 May; 11(5):977-86. PubMed ID: 19436855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web.
    Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD
    Sci Total Environ; 2005 Mar; 339(1-3):89-101. PubMed ID: 15740761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human health risk implications of multiple sources of faecal indicator bacteria in a recreational waterbody.
    Soller JA; Schoen ME; Varghese A; Ichida AM; Boehm AB; Eftim S; Ashbolt NJ; Ravenscroft JE
    Water Res; 2014 Dec; 66():254-264. PubMed ID: 25222329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate and effects of the insecticide-miticide chlorfenapyr in outdoor aquatic microcosms.
    Rand GM
    Ecotoxicol Environ Saf; 2004 May; 58(1):50-60. PubMed ID: 15087163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of freshwater sediment on the survival of Escherichia coli and Salmonella sp. as measured by three methods of enumeration.
    Fish JT; Pettibone GW
    Lett Appl Microbiol; 1995 May; 20(5):277-81. PubMed ID: 7766227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties.
    Halstead NT; McMahon TA; Johnson SA; Raffel TR; Romansic JM; Crumrine PW; Rohr JR
    Ecol Lett; 2014 Aug; 17(8):932-41. PubMed ID: 24811760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalently linked immunomagnetic separation/adenosine triphosphate technique (Cov-IMS/ATP) enables rapid, in-field detection and quantification of Escherichia coli and Enterococcus spp. in freshwater and marine environments.
    Lee CM; Griffith JF; Kaiser W; Jay JA
    J Appl Microbiol; 2010 Jul; 109(1):324-33. PubMed ID: 20102424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Interplay Between Predation, Competition, and Nutrient Levels Influences the Survival of Escherichia coli in Aquatic Environments.
    Wanjugi P; Fox GA; Harwood VJ
    Microb Ecol; 2016 Oct; 72(3):526-37. PubMed ID: 27484343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of submerged aquatic vegetation on the persistence of environmental populations of Enterococcus spp.
    Badgley BD; Thomas FI; Harwood VJ
    Environ Microbiol; 2010 May; 12(5):1271-81. PubMed ID: 20192964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams.
    Fujioka R; Sian-Denton C; Borja M; Castro J; Morphew K
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():83S-89S. PubMed ID: 21182696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments.
    Chandran A; Varghese S; Kandeler E; Thomas A; Hatha M; Mazumder A
    Int J Hyg Environ Health; 2011 Jun; 214(3):258-64. PubMed ID: 21316302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioindicators of pollution in lentic water bodies of Nagpur city.
    Kumari P; Dhadse S; Chaudhari PR; Wate SR
    J Environ Sci Eng; 2007 Oct; 49(4):317-24. PubMed ID: 18476381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.