BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20629748)

  • 41. Process of energy conservation in the extremely haloalkaliphilic methyl-reducing methanogen Methanonatronarchaeum thermophilum.
    Steiniger F; Sorokin DY; Deppenmeier U
    FEBS J; 2022 Jan; 289(2):549-563. PubMed ID: 34435454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site.
    Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI
    Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis.
    Pereira PM; He Q; Valente FM; Xavier AV; Zhou J; Pereira IA; Louro RO
    Antonie Van Leeuwenhoek; 2008 May; 93(4):347-62. PubMed ID: 18060515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crosstalk along the stalk: dynamics of the interaction of subunits B and F in the A(1)A(O) ATP synthase of Methanosarcina mazei Gö1.
    Raghunathan D; Gayen S; Grüber G; Verma CS
    Biochemistry; 2010 May; 49(19):4181-90. PubMed ID: 20377205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis.
    Kröninger L; Berger S; Welte C; Deppenmeier U
    FEBS J; 2016 Feb; 283(3):472-83. PubMed ID: 26573766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri.
    Peinemann S; Müller V; Blaut M; Gottschalk G
    J Bacteriol; 1988 Mar; 170(3):1369-72. PubMed ID: 3343222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The membrane-bound electron transport system of Methanosarcina species.
    Deppenmeier U
    J Bioenerg Biomembr; 2004 Feb; 36(1):55-64. PubMed ID: 15168610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy-converting hydrogenases: the link between H
    Schoelmerich MC; Müller V
    Cell Mol Life Sci; 2020 Apr; 77(8):1461-1481. PubMed ID: 31630229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase.
    Bäumer S; Murakami E; Brodersen J; Gottschalk G; Ragsdale SW; Deppenmeier U
    FEBS Lett; 1998 May; 428(3):295-8. PubMed ID: 9654152
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1.
    Abken HJ; Tietze M; Brodersen J; Bäumer S; Beifuss U; Deppenmeier U
    J Bacteriol; 1998 Apr; 180(8):2027-32. PubMed ID: 9555882
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Hydrogen Economy of Methanosarcina barkeri: Life in the Fast Lane.
    Lovley DR
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30082458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anaerobic biodegradation of cellulosic material: batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis.
    Qu X; Vavilin VA; Mazéas L; Lemunier M; Duquennoi C; He PJ; Bouchez T
    Waste Manag; 2009 Jun; 29(6):1828-37. PubMed ID: 19157832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila.
    Terlesky KC; Ferry JG
    J Biol Chem; 1988 Mar; 263(9):4075-9. PubMed ID: 3279028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A purified energy-converting hydrogenase from Thermoanaerobacter kivui demonstrates coupled H
    Katsyv A; Müller V
    J Biol Chem; 2022 Aug; 298(8):102216. PubMed ID: 35779632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria.
    Manzoor S; Schnürer A; Bongcam-Rudloff E; Müller B
    Genes (Basel); 2018 Apr; 9(4):. PubMed ID: 29690652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth.
    Tremblay PL; Zhang T; Dar SA; Leang C; Lovley DR
    mBio; 2012 Dec; 4(1):e00406-12. PubMed ID: 23269825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15.
    Yang Z; Lu Y
    Environ Microbiol Rep; 2022 Oct; 14(5):804-811. PubMed ID: 35641250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis.
    Poehlein A; Schmidt S; Kaster AK; Goenrich M; Vollmers J; Thürmer A; Bertsch J; Schuchmann K; Voigt B; Hecker M; Daniel R; Thauer RK; Gottschalk G; Müller V
    PLoS One; 2012; 7(3):e33439. PubMed ID: 22479398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.