BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 20630638)

  • 1. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil.
    Bengtsson G; Törneman N; Yang X
    Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil.
    Törneman N; Yang X; Bååth E; Bengtsson G
    Environ Toxicol Chem; 2008 May; 27(5):1039-46. PubMed ID: 18419193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.
    Byss M; Elhottová D; Tříska J; Baldrian P
    Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spatial variation of microbial properties in a creosote-contaminated soil].
    Yang X; Li S; Bengtsson G; Törneman N
    Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):939-44. PubMed ID: 16110676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.
    Bezza FA; Chirwa EM
    Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area.
    Smułek W; Sydow M; Zabielska-Matejuk J; Kaczorek E
    Ecotoxicol Environ Saf; 2020 Jan; 187():109843. PubMed ID: 31678701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil.
    Sabaté J; Viñas M; Solanas AM
    Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community changes during the bioremediation of creosote-contaminated soil.
    Grant RJ; Muckian LM; Clipson NJ; Doyle EM
    Lett Appl Microbiol; 2007 Mar; 44(3):293-300. PubMed ID: 17309507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.
    Lladó S; Jiménez N; Viñas M; Solanas AM
    Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.
    Bueno-Montes M; Springael D; Ortega-Calvo JJ
    Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GC-MS-MS analysis of bacterial fatty acids in heavily creosote-contaminated soil samples.
    Byss M; Tríska J; Elhottová D
    Anal Bioanal Chem; 2007 Feb; 387(4):1573-7. PubMed ID: 17219099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons.
    Lotfabad SK; Gray MR
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil.
    Juhasz AL; Weber J; Stevenson G; Slee D; Gancarz D; Rofe A; Smith E
    Sci Total Environ; 2014 Mar; 473-474():147-54. PubMed ID: 24368196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements.
    Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E
    Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil.
    Juhasz AL; Smith E; Waller N; Stewart R; Weber J
    Environ Pollut; 2010 Feb; 158(2):585-91. PubMed ID: 19775788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community.
    Simarro R; González N; Bautista LF; Molina MC
    J Hazard Mater; 2013 Nov; 262():158-67. PubMed ID: 24025312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution.
    Posada-Baquero R; Ortega-Calvo JJ
    Environ Pollut; 2011 Dec; 159(12):3692-9. PubMed ID: 21840092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of modified Fenton's reaction on microbial activity and removal of PAHs in creosote oil contaminated soil.
    Palmroth MR; Langwaldt JH; Aunola TA; Goi A; Münster U; Puhakka JA; Tuhkanen TA
    Biodegradation; 2006 Mar; 17(2):131-41. PubMed ID: 16456613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood.
    Covino S; Fabianová T; Křesinová Z; Čvančarová M; Burianová E; Filipová A; Vořísková J; Baldrian P; Cajthaml T
    J Hazard Mater; 2016 Jan; 301():17-26. PubMed ID: 26342147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.