These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 20630638)
1. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Bengtsson G; Törneman N; Yang X Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638 [TBL] [Abstract][Full Text] [Related]
2. Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil. Törneman N; Yang X; Bååth E; Bengtsson G Environ Toxicol Chem; 2008 May; 27(5):1039-46. PubMed ID: 18419193 [TBL] [Abstract][Full Text] [Related]
3. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
4. [Spatial variation of microbial properties in a creosote-contaminated soil]. Yang X; Li S; Bengtsson G; Törneman N Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):939-44. PubMed ID: 16110676 [TBL] [Abstract][Full Text] [Related]
5. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Viñas M; Sabaté J; Espuny MJ; Solanas AM Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736 [TBL] [Abstract][Full Text] [Related]
6. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Bezza FA; Chirwa EM Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261 [TBL] [Abstract][Full Text] [Related]
7. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area. Smułek W; Sydow M; Zabielska-Matejuk J; Kaczorek E Ecotoxicol Environ Saf; 2020 Jan; 187():109843. PubMed ID: 31678701 [TBL] [Abstract][Full Text] [Related]
8. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Sabaté J; Viñas M; Solanas AM Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226 [TBL] [Abstract][Full Text] [Related]
9. Microbial community changes during the bioremediation of creosote-contaminated soil. Grant RJ; Muckian LM; Clipson NJ; Doyle EM Lett Appl Microbiol; 2007 Mar; 44(3):293-300. PubMed ID: 17309507 [TBL] [Abstract][Full Text] [Related]
10. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil. Lladó S; Jiménez N; Viñas M; Solanas AM Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811 [TBL] [Abstract][Full Text] [Related]
11. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils. Bueno-Montes M; Springael D; Ortega-Calvo JJ Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290 [TBL] [Abstract][Full Text] [Related]
12. GC-MS-MS analysis of bacterial fatty acids in heavily creosote-contaminated soil samples. Byss M; Tríska J; Elhottová D Anal Bioanal Chem; 2007 Feb; 387(4):1573-7. PubMed ID: 17219099 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Lotfabad SK; Gray MR Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320 [TBL] [Abstract][Full Text] [Related]
14. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Juhasz AL; Weber J; Stevenson G; Slee D; Gancarz D; Rofe A; Smith E Sci Total Environ; 2014 Mar; 473-474():147-54. PubMed ID: 24368196 [TBL] [Abstract][Full Text] [Related]
15. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Juhasz AL; Smith E; Waller N; Stewart R; Weber J Environ Pollut; 2010 Feb; 158(2):585-91. PubMed ID: 19775788 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. Simarro R; González N; Bautista LF; Molina MC J Hazard Mater; 2013 Nov; 262():158-67. PubMed ID: 24025312 [TBL] [Abstract][Full Text] [Related]
18. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution. Posada-Baquero R; Ortega-Calvo JJ Environ Pollut; 2011 Dec; 159(12):3692-9. PubMed ID: 21840092 [TBL] [Abstract][Full Text] [Related]
19. Effect of modified Fenton's reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Palmroth MR; Langwaldt JH; Aunola TA; Goi A; Münster U; Puhakka JA; Tuhkanen TA Biodegradation; 2006 Mar; 17(2):131-41. PubMed ID: 16456613 [TBL] [Abstract][Full Text] [Related]
20. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. Covino S; Fabianová T; Křesinová Z; Čvančarová M; Burianová E; Filipová A; Vořísková J; Baldrian P; Cajthaml T J Hazard Mater; 2016 Jan; 301():17-26. PubMed ID: 26342147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]