These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 20630719)

  • 1. Preparation of polypropylene superhydrophobic surface and its blood compatibility.
    Hou X; Wang X; Zhu Q; Bao J; Mao C; Jiang L; Shen J
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):247-50. PubMed ID: 20630719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface biocompatible modification of polypropylene by entrapment of polypropylene-block-poly(vinylpyrrolidone).
    Xu M; Qiu J; Lin Y; Shi X; Chen H; Xiao T
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):200-5. PubMed ID: 20598863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics.
    Ljungberg N; Bonini C; Bortolussi F; Boisson C; Heux L; Cavaillé JY
    Biomacromolecules; 2005; 6(5):2732-9. PubMed ID: 16153113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No platelet can adhere--largely improved blood compatibility on nanostructured superhydrophobic surfaces.
    Sun T; Tan H; Han D; Fu Q; Jiang L
    Small; 2005 Oct; 1(10):959-63. PubMed ID: 17193377
    [No Abstract]   [Full Text] [Related]  

  • 6. Surface modification of polymeric biomaterials by albumin grafting using h-irradiation.
    Kamath KR; Park K
    J Appl Biomater; 1994; 5(2):163-73. PubMed ID: 10147177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New biocompatible polypyrrole-based films with good blood compatibility and high electrical conductivity.
    Mao C; Zhu A; Wu Q; Chen X; Kim J; Shen J
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):41-5. PubMed ID: 18786815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research and synthesis of organosilicon nonthrombogenic materials containing sulfobetaine group.
    Min Dy; Li Zz; Shen J; Lin Sc
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):415-20. PubMed ID: 20537874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of adhesions to polypropylene mesh.
    Felemovicius I; Bonsack ME; Hagerman G; Delaney JP
    J Am Coll Surg; 2004 Apr; 198(4):543-8. PubMed ID: 15051006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.
    Balakrishnan B; Kumar DS; Yoshida Y; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(17):3495-502. PubMed ID: 15621239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombogenicity of different suture materials as revealed by scanning electron microscopy.
    Dahlke H; Dociu N; Thurau K
    J Biomed Mater Res; 1980 May; 14(3):251-68. PubMed ID: 7364788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.
    Zangi S; Hejazi I; Seyfi J; Hejazi E; Khonakdar HA; Davachi SM
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():609-15. PubMed ID: 27040256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood coagulation on biomaterials requires the combination of distinct activation processes.
    Sperling C; Fischer M; Maitz MF; Werner C
    Biomaterials; 2009 Sep; 30(27):4447-56. PubMed ID: 19535136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of blood plasma coagulation and its propagation at surfaces.
    Faxälv L; Tengvall P; Lindahl TL
    J Biomed Mater Res A; 2008 Jun; 85(4):1129-34. PubMed ID: 17907239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on the mechanism of hemocompatibility of titanium oxide films].
    Zhang F; Li C; Wang X; Zheng Z; Liu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):146-50. PubMed ID: 12557767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypropylene IUCD retrieval fibers: surface morphology, material properties, microbial attachment, and migration.
    Coughlin RW; Vieth RF; DiBenedetto AT
    J Appl Biomater; 1992; 3(2):99-115. PubMed ID: 10147707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Just scratching the surface: varied coagulation effects of polymer containers on TEG variables.
    Roche AM; James MF; Grocott MP; Mythen MG
    Eur J Anaesthesiol; 2006 Jan; 23(1):45-9. PubMed ID: 16390565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood compatibility of polypropylene surfaces in relation to the crystalline-amorphous microstructure.
    Kawamoto N; Mori H; Terano M; Yui N
    J Biomater Sci Polym Ed; 1997; 8(11):859-77. PubMed ID: 9342652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Improvement of blood compatibility of small intestinal submucosa used as engineering vascular scaffolds by nano-bionic surface modification].
    Han BS; Fan CY; Liu SH
    Zhonghua Yi Xue Za Zhi; 2006 Aug; 86(29):2065-8. PubMed ID: 17064554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism.
    Ishihara K; Oshida H; Endo Y; Ueda T; Watanabe A; Nakabayashi N
    J Biomed Mater Res; 1992 Dec; 26(12):1543-52. PubMed ID: 1484061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.