BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20631165)

  • 1. touché Is required for touch-evoked generator potentials within vertebrate sensory neurons.
    Low SE; Ryan J; Sprague SM; Hirata H; Cui WW; Zhou W; Hume RI; Kuwada JY; Saint-Amant L
    J Neurosci; 2010 Jul; 30(28):9359-67. PubMed ID: 20631165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation.
    Low SE; Zhou W; Choong I; Saint-Amant L; Sprague SM; Hirata H; Cui WW; Hume RI; Kuwada JY
    Dev Neurobiol; 2010 Jun; 70(7):508-22. PubMed ID: 20225246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors.
    Low SE; Amburgey K; Horstick E; Linsley J; Sprague SM; Cui WW; Zhou W; Hirata H; Saint-Amant L; Hume RI; Kuwada JY
    J Neurosci; 2011 Aug; 31(32):11633-44. PubMed ID: 21832193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability.
    Carmean V; Yonkers MA; Tellez MB; Willer JR; Willer GB; Gregg RG; Geisler R; Neuhauss SC; Ribera AB
    J Neurophysiol; 2015 Aug; 114(2):1146-57. PubMed ID: 26133798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons.
    Douglass AD; Kraves S; Deisseroth K; Schier AF; Engert F
    Curr Biol; 2008 Aug; 18(15):1133-7. PubMed ID: 18682213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b.
    Low SE; Woods IG; Lachance M; Ryan J; Schier AF; Saint-Amant L
    J Neurophysiol; 2012 Jul; 108(1):148-59. PubMed ID: 22490555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.
    Ji ZG; Ito S; Honjoh T; Ohta H; Ishizuka T; Fukazawa Y; Yawo H
    PLoS One; 2012; 7(3):e32699. PubMed ID: 22412908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound sensory action potentials evoked by tactile and by electrical stimulation in normal median and sural nerves.
    Krarup C; Trojaborg W
    Muscle Nerve; 1994 Jul; 17(7):733-40. PubMed ID: 8007999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically evoked cortical potentials: A physiological approach to assessment of anorectal sensory pathways.
    Carrington EV; Evers J; Scott SM; Knowles CH; O'Connell PR; Jones JF
    J Neurosci Methods; 2015 Dec; 256():198-202. PubMed ID: 26363190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the excitatory receptive fields of infragranular forelimb neurons in the rat primary somatosensory cortex responding to touch.
    Tutunculer B; Foffani G; Himes BT; Moxon KA
    Cereb Cortex; 2006 Jun; 16(6):791-810. PubMed ID: 16120794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current.
    Ribera AB; Nüsslein-Volhard C
    J Neurosci; 1998 Nov; 18(22):9181-91. PubMed ID: 9801358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):591-609. PubMed ID: 4319015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network interactions among sensory neurons in the leech.
    Burgin AM; Szczupak L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):59-67. PubMed ID: 12548431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel processing in cerebral cortex of the marmoset monkey: effect of reversible SI inactivation on tactile responses in SII.
    Zhang HQ; Murray GM; Turman AB; Mackie PD; Coleman GT; Rowe MJ
    J Neurophysiol; 1996 Dec; 76(6):3633-55. PubMed ID: 8985863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking functions of cortical networks on a millisecond timescale.
    Jousmäki V
    Neural Netw; 2000; 13(8-9):883-9. PubMed ID: 11156199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude of somatosensory cortical evoked potentials is correlated with spontaneous activity of spinal neurones in the cat.
    Manjarrez E; Rojas-Piloni G; Martínez L; Vázquez D; Vélez D; Méndez I; Flores A
    Neurosci Lett; 2002 May; 323(3):187-90. PubMed ID: 11959416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictability of the target stimulus for sensory-guided movement modulates early somatosensory cortical potentials.
    Legon W; Staines WR
    Clin Neurophysiol; 2006 Jun; 117(6):1345-53. PubMed ID: 16644272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sensory neurons of touch.
    Abraira VE; Ginty DD
    Neuron; 2013 Aug; 79(4):618-39. PubMed ID: 23972592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrotactile coding capacities of spinocervical tract neurons in the cat.
    Sahai V; Mahns DA; Perkins NM; Robinson L; Rowe MJ
    J Neurophysiol; 2006 Mar; 95(3):1465-77. PubMed ID: 16319218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Threshold Mechanosensitive VGLUT3-Lineage Sensory Neurons Mediate Spinal Inhibition of Itch by Touch.
    Sakai K; Sanders KM; Lin SH; Pavlenko D; Funahashi H; Lozada T; Hao S; Chen CC; Akiyama T
    J Neurosci; 2020 Sep; 40(40):7688-7701. PubMed ID: 32895292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.