These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 20631293)
1. Larvae of the midge Chironomus riparius possess two distinct mechanisms for ionoregulation in response to ion-poor conditions. Nguyen H; Donini A Am J Physiol Regul Integr Comp Physiol; 2010 Sep; 299(3):R762-73. PubMed ID: 20631293 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti. Del Duca O; Nasirian A; Galperin V; Donini A J Exp Biol; 2011 Dec; 214(Pt 23):3992-9. PubMed ID: 22071191 [TBL] [Abstract][Full Text] [Related]
3. FLUID AND ION SECRETION BY MALPIGHIAN TUBULES OF LARVAL CHIRONOMIDS, Chironomus riparius: EFFECTS OF REARING SALINITY, TRANSPORT INHIBITORS, AND SEROTONIN. Zadeh-Tahmasebi M; Bui P; Donini A Arch Insect Biochem Physiol; 2016 Oct; 93(2):67-85. PubMed ID: 27357470 [TBL] [Abstract][Full Text] [Related]
4. Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl- transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti. Donini A; Gaidhu MP; Strasberg DR; O'donnell MJ J Exp Biol; 2007 Mar; 210(Pt 6):983-92. PubMed ID: 17337711 [TBL] [Abstract][Full Text] [Related]
5. The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure. Jonusaite S; Kelly SP; Donini A J Comp Physiol B; 2011 Apr; 181(3):343-52. PubMed ID: 21061010 [TBL] [Abstract][Full Text] [Related]
6. Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity. Jonusaite S; Kelly SP; Donini A J Exp Biol; 2013 Oct; 216(Pt 19):3637-48. PubMed ID: 23788699 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. Donini A; O'Donnell MJ J Exp Biol; 2005 Feb; 208(Pt 4):603-10. PubMed ID: 15695753 [TBL] [Abstract][Full Text] [Related]
8. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake. Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826 [TBL] [Abstract][Full Text] [Related]
9. Ion-selective microelectrode measurements of Tl⁺ and K⁺ transport by the gut and associated epithelia in Chironomus riparius. Belowitz R; O'Donnell MJ Aquat Toxicol; 2013 Aug; 138-139():70-80. PubMed ID: 23721849 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae. Naikkhwah W; O'Donnell MJ J Exp Biol; 2012 Feb; 215(Pt 3):461-70. PubMed ID: 22246255 [TBL] [Abstract][Full Text] [Related]
11. Ion regulatory patterns of mosquito larvae collected from breeding sites in the Amazon rain forest. Patrick ML; Ferreira RL; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL Physiol Biochem Zool; 2002; 75(3):215-22. PubMed ID: 12177825 [TBL] [Abstract][Full Text] [Related]
12. Characterization of cadmium and calcium fluxes along the gut, malpighian tubules, and anal papillae of the dipteran Chironomus riparius. Leonard EM; Belowitz R; Agema P; O'Donnell MJ Environ Toxicol Chem; 2018 Oct; 37(10):2542-2549. PubMed ID: 29920766 [TBL] [Abstract][Full Text] [Related]
13. The transcriptome of anal papillae of Aedes aegypti reveals their importance in xenobiotic detoxification and adds significant knowledge on ion, water and ammonia transport mechanisms. Durant AC; Grieco Guardian E; Kolosov D; Donini A J Insect Physiol; 2021 Jul; 132():104269. PubMed ID: 34174320 [TBL] [Abstract][Full Text] [Related]
14. Alkalinization in the isolated and perfused anterior midgut of the larval mosquito, Aedes aegypti. Onken H; Moffett SB; Moffett DF J Insect Sci; 2008; 8():1-20. PubMed ID: 20307229 [TBL] [Abstract][Full Text] [Related]
15. Cadmium transport by the gut and Malpighian tubules of Chironomus riparius. Leonard EM; Pierce LM; Gillis PL; Wood CM; O'Donnell MJ Aquat Toxicol; 2009 May; 92(3):179-86. PubMed ID: 19251326 [TBL] [Abstract][Full Text] [Related]
16. Development of Aedes aegypti (Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation. Durant AC; Donini A Sci Rep; 2019 Dec; 9(1):19028. PubMed ID: 31836747 [TBL] [Abstract][Full Text] [Related]
17. Effects of exposure to high concentrations of waterborne Tl on K and Tl concentrations in Chironomus riparius larvae. Belowitz R; Leonard EM; O'Donnell MJ Comp Biochem Physiol C Toxicol Pharmacol; 2014 Nov; 166():59-64. PubMed ID: 25046737 [TBL] [Abstract][Full Text] [Related]
18. The effect of transport-blocking drugs on secretion of fluid and electrolytes by the mandibular gland of red kangaroos, Macropus rufus. Beal AM Arch Oral Biol; 1997; 42(10-11):705-16. PubMed ID: 9447260 [TBL] [Abstract][Full Text] [Related]
19. A structural study of the anal papillae of the midge Chironomus riparius Meigen (Diptera: Chironomidae). Credland PF Cell Tissue Res; 1976 Feb; 166(4):531-40. PubMed ID: 1253247 [TBL] [Abstract][Full Text] [Related]