These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Large sulfur bacteria and the formation of phosphorite. Schulz HN; Schulz HD Science; 2005 Jan; 307(5708):416-8. PubMed ID: 15662012 [TBL] [Abstract][Full Text] [Related]
3. Carbon source utilization and accumulation of respiration-related substances by freshwater Thioploca species. Kojima H; Nakajima T; Fukui M FEMS Microbiol Ecol; 2007 Jan; 59(1):23-31. PubMed ID: 16989657 [TBL] [Abstract][Full Text] [Related]
5. [Colorless sulfur bacteria Thioploca from different sites in Lake Baikal]. Zemskaia TI; Chernitsyna SM; Dul'tseva NM; Sergeeva VN; Pogodaeva TV; Namsaraev BB Mikrobiologiia; 2009; 78(1):134-43. PubMed ID: 19334606 [TBL] [Abstract][Full Text] [Related]
6. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
7. [Lithoautotrophic growth of the freshwater colorless sulfur bacterium Beggiatoa "leptomitiformis" D-402]. Patritskaia VIu; Grabovich MIu; Muntian MS; Dubinina GA Mikrobiologiia; 2001; 70(2):182-8. PubMed ID: 11386050 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Kamp A; Stief P; Schulz-Vogt HN Appl Environ Microbiol; 2006 Jul; 72(7):4755-60. PubMed ID: 16820468 [TBL] [Abstract][Full Text] [Related]
10. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Kalanetra KM; Joye SB; Sunseri NR; Nelson DC Environ Microbiol; 2005 Sep; 7(9):1451-60. PubMed ID: 16104867 [TBL] [Abstract][Full Text] [Related]
11. Big bacteria. Schulz HN; Jorgensen BB Annu Rev Microbiol; 2001; 55():105-37. PubMed ID: 11544351 [TBL] [Abstract][Full Text] [Related]
12. Amorphous mineral phases in magnetotactic multicellular aggregates. Lins U; Farina M Arch Microbiol; 2001 Nov; 176(5):323-8. PubMed ID: 11702073 [TBL] [Abstract][Full Text] [Related]
13. [Regulation of metabolic and electron transport pathways in the freshwater bacterium Beggiatoa leptomitiformis D-402]. Muntian MS; Grabovich MIu; Patritskaia VIu; Dubinina G Mikrobiologiia; 2005; 74(4):452-9. PubMed ID: 16211847 [TBL] [Abstract][Full Text] [Related]
14. Potential symbionts in bathyal foraminifera. Bernhard JM Science; 2003 Feb; 299(5608):861. PubMed ID: 12574621 [No Abstract] [Full Text] [Related]
15. Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats. Grünke S; Lichtschlag A; de Beer D; Kuypers M; Lösekann-Behrens T; Ramette A; Boetius A ISME J; 2010 Aug; 4(8):1031-43. PubMed ID: 20220790 [TBL] [Abstract][Full Text] [Related]
17. Polysulfide reduction by Clostridium relatives isolated from sulfate-reducing enrichment cultures. Takahashi Y; Suto K; Inoue C J Biosci Bioeng; 2010 Apr; 109(4):372-80. PubMed ID: 20226380 [TBL] [Abstract][Full Text] [Related]
18. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Sievert SM; Wieringa EB; Wirsen CO; Taylor CD Environ Microbiol; 2007 Jan; 9(1):271-6. PubMed ID: 17227432 [TBL] [Abstract][Full Text] [Related]
19. [Lithotrophic microorganisms of the oxidative cycles of sulfur and iron]. Karavaĭko GI; Dubinina GA; Kondrat'eva TF Mikrobiologiia; 2006; 75(5):593-629. PubMed ID: 17091584 [TBL] [Abstract][Full Text] [Related]