These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 20631854)

  • 1. How neurons generate behavior in a hatchling amphibian tadpole: an outline.
    Roberts A; Li WC; Soffe SR
    Front Behav Neurosci; 2010; 4():16. PubMed ID: 20631854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles for inhibition: studies on networks controlling swimming in young frog tadpoles.
    Roberts A; Li WC; Soffe SR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Feb; 194(2):185-93. PubMed ID: 18228081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity.
    Li WC; Sautois B; Roberts A; Soffe SR
    J Neurosci; 2007 Nov; 27(45):12267-76. PubMed ID: 17989292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.
    Roberts A; Hill NA; Hicks R
    J Exp Biol; 2000 Jun; 203(Pt 12):1869-85. PubMed ID: 10821744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times.
    Koutsikou S; Merrison-Hort R; Buhl E; Ferrario A; Li WC; Borisyuk R; Soffe SR; Roberts A
    J Physiol; 2018 Dec; 596(24):6219-6233. PubMed ID: 30074236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brainstem control of activity and responsiveness in resting frog tadpoles: tonic inhibition.
    Lambert TD; Li WC; Soffe SR; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):331-42. PubMed ID: 14991305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central circuits controlling locomotion in young frog tadpoles.
    Roberts A; Soffe SR; Wolf ES; Yoshida M; Zhao FY
    Ann N Y Acad Sci; 1998 Nov; 860():19-34. PubMed ID: 9928299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making.
    Buhl E; Soffe SR; Roberts A
    J Physiol; 2015 Oct; 593(19):4423-37. PubMed ID: 26138033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does a nervous system produce behaviour? A case study in neurobiology.
    Roberts A
    Sci Prog; 1990; 74(293 Pt 1):31-51. PubMed ID: 2176347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling
    Larbi MC; Messa G; Jalal H; Koutsikou S
    Front Neural Circuits; 2022; 16():1027831. PubMed ID: 36619662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles.
    Berkowitz A; Roberts A; Soffe SR
    Front Behav Neurosci; 2010; 4():36. PubMed ID: 20631847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?
    Roberts A; Conte D; Hull M; Merrison-Hort R; al Azad AK; Buhl E; Borisyuk R; Soffe SR
    J Neurosci; 2014 Jan; 34(2):608-21. PubMed ID: 24403159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator.
    Getting PA; Dekin MS
    J Neurophysiol; 1985 Feb; 53(2):466-80. PubMed ID: 2984350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central pattern generator for swimming in Melibe.
    Thompson S; Watson WH
    J Exp Biol; 2005 Apr; 208(Pt 7):1347-61. PubMed ID: 15781895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.