These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 20632129)
1. Accumulation of poly[(R)-3-hydroxyalkanoates] in Enterobacter cloacae SU-1 during growth with two different carbon sources in batch culture. Samrot AV; Avinesh RB; Sukeetha SD; Senthilkumar P Appl Biochem Biotechnol; 2011 Jan; 163(1):195-203. PubMed ID: 20632129 [TBL] [Abstract][Full Text] [Related]
2. Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Sun Z; Ramsay JA; Guay M; Ramsay BA Appl Microbiol Biotechnol; 2009 Mar; 82(4):657-62. PubMed ID: 19050862 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Durner R; Zinn M; Witholt B; Egli T Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197 [TBL] [Abstract][Full Text] [Related]
4. Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. Sun Z; Ramsay J; Guay M; Ramsay B J Biotechnol; 2009 Sep; 143(4):262-7. PubMed ID: 19632279 [TBL] [Abstract][Full Text] [Related]
5. Growth and accumulation dynamics of poly(3-hydroxyalkanoate) (PHA) in Pseudomonas putida GPo1 cultivated in continuous culture under transient feed conditions. Zinn M; Durner R; Zinn H; Ren Q; Egli T; Witholt B Biotechnol J; 2011 Oct; 6(10):1240-52. PubMed ID: 21751398 [TBL] [Abstract][Full Text] [Related]
6. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source. Rojas-Rosas O; Villafaña-Rojas J; López-Dellamary FA; Nungaray-Arellano J; González-Reynoso O Can J Microbiol; 2007 Jul; 53(7):840-51. PubMed ID: 17898839 [TBL] [Abstract][Full Text] [Related]
7. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Sun Z; Ramsay JA; Guay M; Ramsay BA Appl Microbiol Biotechnol; 2007 Feb; 74(1):69-77. PubMed ID: 17063330 [TBL] [Abstract][Full Text] [Related]
8. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655 [TBL] [Abstract][Full Text] [Related]
9. Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. Valappil SP; Rai R; Bucke C; Roy I J Appl Microbiol; 2008 Jun; 104(6):1624-35. PubMed ID: 18194257 [TBL] [Abstract][Full Text] [Related]
10. Polyhydroxyalkanoates production by actinobacteria isolated from soil. Matias F; Bonatto D; Padilla G; Rodrigues MF; Henriques JA Can J Microbiol; 2009 Jul; 55(7):790-800. PubMed ID: 19767851 [TBL] [Abstract][Full Text] [Related]
11. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Muangwong A; Boontip T; Pachimsawat J; Napathorn SC Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857 [TBL] [Abstract][Full Text] [Related]
12. Carbon : nitrogen : phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. Thompson LJ; Gray V; Lindsay D; von Holy A J Appl Microbiol; 2006 Nov; 101(5):1105-13. PubMed ID: 17040234 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering for microbial production of polyhydroxyalkanoates consisting of high 3-hydroxyhexanoate content by recombinant Aeromonas hydrophila. Jian J; Li ZJ; Ye HM; Yuan MQ; Chen GQ Bioresour Technol; 2010 Aug; 101(15):6096-102. PubMed ID: 20236821 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Hori K; Marsudi S; Unno H Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates. Sujatha K; Mahalakshmi A; Shenbagarathai R Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530 [TBL] [Abstract][Full Text] [Related]
16. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Povolo S; Toffano P; Basaglia M; Casella S Bioresour Technol; 2010 Oct; 101(20):7902-7. PubMed ID: 20537531 [TBL] [Abstract][Full Text] [Related]
17. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha]. Yan Q; Du GC; Chen J Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073 [TBL] [Abstract][Full Text] [Related]
18. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562]. Volova TG; Kozhevnikov IV; Dolgopolova IuB; Trusova MIu; Kalacheva GS; Aref'eva IuV Mikrobiologiia; 2005; 74(6):788-94. PubMed ID: 16400989 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Nath K; Kumar A; Das D Appl Microbiol Biotechnol; 2005 Sep; 68(4):533-41. PubMed ID: 15666144 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of polyhydroxyalkanoates by Microlunatus phosphovorus under various growth conditions. Akar A; Akkaya EU; Yesiladali SK; Celikyilmaz G; Cokgor EU; Tamerler C; Orhon D; Cakar ZP J Ind Microbiol Biotechnol; 2006 Mar; 33(3):215-20. PubMed ID: 15660231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]