These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 20632144)
1. A statistical method (cross-validation) for bone loss region detection after spaceflight. Zhao Q; Li W; Li C; Chu PW; Kornak J; Lang TF; Fang J; Lu Y Australas Phys Eng Sci Med; 2010 Jun; 33(2):163-9. PubMed ID: 20632144 [TBL] [Abstract][Full Text] [Related]
2. Spaceflight-induced bone loss: is there an osteoporosis risk? Sibonga JD Curr Osteoporos Rep; 2013 Jun; 11(2):92-8. PubMed ID: 23564190 [TBL] [Abstract][Full Text] [Related]
3. A human mission to Mars: Predicting the bone mineral density loss of astronauts. Axpe E; Chan D; Abegaz MF; Schreurs AS; Alwood JS; Globus RK; Appel EA PLoS One; 2020; 15(1):e0226434. PubMed ID: 31967993 [TBL] [Abstract][Full Text] [Related]
4. The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions. Rosenthal R; Schneider VS; Jones JA; Sibonga JD Cells; 2024 Aug; 13(16):. PubMed ID: 39195227 [TBL] [Abstract][Full Text] [Related]
5. Spaceflight osteoporosis: current state and future perspective. Cappellesso R; Nicole L; Guido A; Pizzol D Endocr Regul; 2015 Oct; 49(4):231-9. PubMed ID: 26494042 [TBL] [Abstract][Full Text] [Related]
6. Interventions to prevent bone loss in astronauts during space flight. Iwamoto J; Takeda T; Sato Y Keio J Med; 2005 Jun; 54(2):55-9. PubMed ID: 16077253 [TBL] [Abstract][Full Text] [Related]
7. Association of Long-Duration Spaceflight With Anterior and Posterior Ocular Structure Changes in Astronauts and Their Recovery. Macias BR; Patel NB; Gibson CR; Samuels BC; Laurie SS; Otto C; Ferguson CR; Lee SMC; Ploutz-Snyder R; Kramer LA; Mader TH; Brunstetter T; Stenger MB JAMA Ophthalmol; 2020 May; 138(5):553-559. PubMed ID: 32239198 [TBL] [Abstract][Full Text] [Related]
8. Bone metabolism and renal stone risk during International Space Station missions. Smith SM; Heer M; Shackelford LC; Sibonga JD; Spatz J; Pietrzyk RA; Hudson EK; Zwart SR Bone; 2015 Dec; 81():712-720. PubMed ID: 26456109 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. Lang TF; Leblanc AD; Evans HJ; Lu Y J Bone Miner Res; 2006 Aug; 21(8):1224-30. PubMed ID: 16869720 [TBL] [Abstract][Full Text] [Related]
10. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Sibonga J; Matsumoto T; Jones J; Shapiro J; Lang T; Shackelford L; Smith SM; Young M; Keyak J; Kohri K; Ohshima H; Spector E; LeBlanc A Bone; 2019 Nov; 128():112037. PubMed ID: 31400472 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of a predictive bone fracture risk model for astronauts. Nelson ES; Lewandowski B; Licata A; Myers JG Ann Biomed Eng; 2009 Nov; 37(11):2337-59. PubMed ID: 19707874 [TBL] [Abstract][Full Text] [Related]
12. Use of Quantitative Computed Tomography to Assess for Clinically-relevant Skeletal Effects of Prolonged Spaceflight on Astronaut Hips. Sibonga JD; Spector ER; Keyak JH; Zwart SR; Smith SM; Lang TF J Clin Densitom; 2020; 23(2):155-164. PubMed ID: 31558405 [TBL] [Abstract][Full Text] [Related]
13. Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. McCarthy I; Goodship A; Herzog R; Oganov V; Stussi E; Vahlensieck M Eur J Clin Invest; 2000 Dec; 30(12):1044-54. PubMed ID: 11122319 [TBL] [Abstract][Full Text] [Related]
14. The mechanical control system of bone in weightless spaceflight and in aging. Schultheis L Exp Gerontol; 1991; 26(2-3):203-14. PubMed ID: 1915691 [TBL] [Abstract][Full Text] [Related]
15. Nutritional interventions related to bone turnover in European space missions and simulation models. Heer M Nutrition; 2002 Oct; 18(10):853-6. PubMed ID: 12361778 [TBL] [Abstract][Full Text] [Related]
16. [Secondary osteoporosis UPDATE. Bone loss due to bed rest and human space flight study]. Ohshima H Clin Calcium; 2010 May; 20(5):709-16. PubMed ID: 20445282 [TBL] [Abstract][Full Text] [Related]
17. Regional muscle loss after short duration spaceflight. LeBlanc A; Rowe R; Schneider V; Evans H; Hedrick T Aviat Space Environ Med; 1995 Dec; 66(12):1151-4. PubMed ID: 8747608 [TBL] [Abstract][Full Text] [Related]
18. Spaceflight and hindlimb suspension disuse models in mice. Milstead JR; Simske SJ; Bateman TA Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943 [TBL] [Abstract][Full Text] [Related]
19. The potential influence of the microbiota and probiotics on women during long spaceflights. Urbaniak C; Reid G Womens Health (Lond); 2016; 12(2):193-8. PubMed ID: 26901697 [TBL] [Abstract][Full Text] [Related]
20. Evaluating Bone Loss in ISS Astronauts. Sibonga JD; Spector ER; Johnston SL; Tarver WJ Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A38-A44. PubMed ID: 26630194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]