These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20632173)

  • 1. Optical techniques for the molecular imaging of angiogenesis.
    Eisenblätter M; Höltke C; Persigehl T; Bremer C
    Eur J Nucl Med Mol Imaging; 2010 Aug; 37 Suppl 1():S127-37. PubMed ID: 20632173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast-enhanced ultrasound for molecular imaging of angiogenesis.
    Eisenbrey JR; Forsberg F
    Eur J Nucl Med Mol Imaging; 2010 Aug; 37 Suppl 1():S138-46. PubMed ID: 20461376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic nanomaterials for tumor angiogenesis imaging.
    Liu Z; Peng R
    Eur J Nucl Med Mol Imaging; 2010 Aug; 37 Suppl 1():S147-63. PubMed ID: 20461373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of tumor vasculature using Twente photoacoustic systems.
    Jose J; Manohar S; Kolkman RG; Steenbergen W; van Leeuwen TG
    J Biophotonics; 2009 Dec; 2(12):701-17. PubMed ID: 19718681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice.
    Chen K; Yap LP; Park R; Hui X; Wu K; Fan D; Chen X; Conti PS
    Amino Acids; 2012 Apr; 42(4):1329-37. PubMed ID: 21212998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for in vivo near-infrared imaging.
    Ma Z; Wang F; Wang W; Zhong Y; Dai H
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33372162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal imaging probes for combined PET and OI: recent developments and future directions for hybrid agent development.
    Seibold U; Wängler B; Schirrmacher R; Wängler C
    Biomed Res Int; 2014; 2014():153741. PubMed ID: 24822177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular imaging agents: impact on diagnosis and therapeutics in oncology.
    Seaman ME; Contino G; Bardeesy N; Kelly KA
    Expert Rev Mol Med; 2010 Jul; 12():e20. PubMed ID: 20633310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIR fluorescent small molecules for intraoperative imaging.
    Owens EA; Lee S; Choi J; Henary M; Choi HS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(6):828-38. PubMed ID: 25645081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-Specific Near-Infrared Fluorescence Imaging.
    Owens EA; Henary M; El Fakhri G; Choi HS
    Acc Chem Res; 2016 Sep; 49(9):1731-40. PubMed ID: 27564418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics.
    Miao Q; Pu K
    Adv Mater; 2018 Dec; 30(49):e1801778. PubMed ID: 30058244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes.
    Huang R; Conti PS; Chen K
    Methods Mol Biol; 2016; 1444():73-84. PubMed ID: 27283419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity.
    Wang J; Lv Y; Wan W; Wang X; Li AD; Tian Z
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4399-406. PubMed ID: 26859429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A near-infrared fluorescent calcium probe: a new tool for intracellular multicolour Ca2+ imaging.
    Matsui A; Umezawa K; Shindo Y; Fujii T; Citterio D; Oka K; Suzuki K
    Chem Commun (Camb); 2011 Oct; 47(37):10407-9. PubMed ID: 21837350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements.
    Brix G; Griebel J; Kiessling F; Wenz F
    Eur J Nucl Med Mol Imaging; 2010 Aug; 37 Suppl 1():S30-51. PubMed ID: 20503049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated coregistered imaging using a hand-held probe-based optical imager.
    Regalado S; Erickson SJ; Zhu B; Ge J; Godavarty A
    Rev Sci Instrum; 2010 Feb; 81(2):023702. PubMed ID: 20192497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of NIR dyes in cancer targeting and imaging.
    Luo S; Zhang E; Su Y; Cheng T; Shi C
    Biomaterials; 2011 Oct; 32(29):7127-38. PubMed ID: 21724249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.
    Sreejith S; Joseph J; Lin M; Menon NV; Borah P; Ng HJ; Loong YX; Kang Y; Yu SW; Zhao Y
    ACS Nano; 2015 Jun; 9(6):5695-704. PubMed ID: 26022724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?
    Zhu B; Rasmussen JC; Sevick-Muraca EM
    Med Phys; 2014 Feb; 41(2):022105. PubMed ID: 24506637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Background-free in vivo time domain optical molecular imaging using colloidal quantum dots.
    Ma G
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2835-44. PubMed ID: 23448359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.