These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20632374)
1. Using partition designs to enhance purification process understanding. Pieracci J; Perry L; Conley L Biotechnol Bioeng; 2010 Dec; 107(5):814-24. PubMed ID: 20632374 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of protein engineering and process optimization approaches to enhance antibody drug manufacturability. Conley GP; Viswanathan M; Hou Y; Rank DL; Lindberg AP; Cramer SM; Ladner RC; Nixon AE; Chen J Biotechnol Bioeng; 2011 Nov; 108(11):2634-44. PubMed ID: 21618474 [TBL] [Abstract][Full Text] [Related]
3. Defining process design space for monoclonal antibody cell culture. Abu-Absi SF; Yang L; Thompson P; Jiang C; Kandula S; Schilling B; Shukla AA Biotechnol Bioeng; 2010 Aug; 106(6):894-905. PubMed ID: 20589669 [TBL] [Abstract][Full Text] [Related]
4. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Smejkal B; Agrawal NJ; Helk B; Schulz H; Giffard M; Mechelke M; Ortner F; Heckmeier P; Trout BL; Hekmat D Biotechnol Bioeng; 2013 Sep; 110(9):2452-61. PubMed ID: 23532914 [TBL] [Abstract][Full Text] [Related]
5. Aggregates in monoclonal antibody manufacturing processes. Vázquez-Rey M; Lang DA Biotechnol Bioeng; 2011 Jul; 108(7):1494-508. PubMed ID: 21480193 [TBL] [Abstract][Full Text] [Related]
6. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein. Looby M; Ibarra N; Pierce JJ; Buckley K; O'Donovan E; Heenan M; Moran E; Farid SS; Baganz F Biotechnol Prog; 2011; 27(6):1718-29. PubMed ID: 21948302 [TBL] [Abstract][Full Text] [Related]
7. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562 [TBL] [Abstract][Full Text] [Related]
8. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents. Toueille M; Uzel A; Depoisier JF; Gantier R J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915 [TBL] [Abstract][Full Text] [Related]
9. Periodic counter-current chromatography -- design and operational considerations for integrated and continuous purification of proteins. Godawat R; Brower K; Jain S; Konstantinov K; Riske F; Warikoo V Biotechnol J; 2012 Dec; 7(12):1496-508. PubMed ID: 23070975 [TBL] [Abstract][Full Text] [Related]
10. Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production. Strauss DM; Cano T; Cai N; Delucchi H; Plancarte M; Coleman D; Blank GS; Chen Q; Yang B Biotechnol Prog; 2010; 26(3):750-5. PubMed ID: 20306523 [TBL] [Abstract][Full Text] [Related]
11. Online integrity monitoring in the protein A step of mAb production processes-increasing reliability and process robustness. Bork C; Holdridge S; Walter M; Fallon E; Pohlscheidt M Biotechnol Prog; 2014; 30(2):383-90. PubMed ID: 24376144 [TBL] [Abstract][Full Text] [Related]
12. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Bareither R; Bargh N; Oakeshott R; Watts K; Pollard D Biotechnol Bioeng; 2013 Dec; 110(12):3126-38. PubMed ID: 23775295 [TBL] [Abstract][Full Text] [Related]
13. Demonstration of robust host cell protein clearance in biopharmaceutical downstream processes. Shukla AA; Jiang C; Ma J; Rubacha M; Flansburg L; Lee SS Biotechnol Prog; 2008; 24(3):615-22. PubMed ID: 18410156 [TBL] [Abstract][Full Text] [Related]
14. Application of a quality by design approach to the cell culture process of monoclonal antibody production, resulting in the establishment of a design space. Nagashima H; Watari A; Shinoda Y; Okamoto H; Takuma S J Pharm Sci; 2013 Dec; 102(12):4274-83. PubMed ID: 24122699 [TBL] [Abstract][Full Text] [Related]
15. Recovery and purification process development for monoclonal antibody production. Liu HF; Ma J; Winter C; Bayer R MAbs; 2010; 2(5):480-99. PubMed ID: 20647768 [TBL] [Abstract][Full Text] [Related]
17. Rational and systematic protein purification process development: the next generation. Nfor BK; Verhaert PD; van der Wielen LA; Hubbuch J; Ottens M Trends Biotechnol; 2009 Dec; 27(12):673-9. PubMed ID: 19815300 [TBL] [Abstract][Full Text] [Related]
18. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
19. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Chen J; Tetrault J; Ley A J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111 [TBL] [Abstract][Full Text] [Related]
20. Using precipitation by polyamines as an alternative to chromatographic separation in antibody purification processes. Ma J; Hoang H; Myint T; Peram T; Fahrner R; Chou JH J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Mar; 878(9-10):798-806. PubMed ID: 20181538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]