These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 20632378)
1. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Campbell E; Wheeldon IR; Banta S Biotechnol Bioeng; 2010 Dec; 107(5):763-74. PubMed ID: 20632378 [TBL] [Abstract][Full Text] [Related]
2. Extreme makeover: Engineering the activity of a thermostable alcohol dehydrogenase (AdhD) from Pyrococcus furiosus. Solanki K; Abdallah W; Banta S Biotechnol J; 2016 Dec; 11(12):1483-1497. PubMed ID: 27593979 [TBL] [Abstract][Full Text] [Related]
3. Modular exchange of substrate-binding loops alters both substrate and cofactor specificity in a member of the aldo-keto reductase superfamily. Campbell E; Chuang S; Banta S Protein Eng Des Sel; 2013 Mar; 26(3):181-6. PubMed ID: 23175796 [TBL] [Abstract][Full Text] [Related]
4. Engineering the cofactor specificity of an alcohol dehydrogenase via single mutations or insertions distal to the 2'-phosphate group of NADP(H). Solanki K; Abdallah W; Banta S Protein Eng Des Sel; 2017 May; 30(5):373-380. PubMed ID: 28201792 [TBL] [Abstract][Full Text] [Related]
5. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Steen IH; Lien T; Madsen MS; Birkeland NK Arch Microbiol; 2002 Oct; 178(4):297-300. PubMed ID: 12209263 [TBL] [Abstract][Full Text] [Related]
6. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase. Ratnam K; Ma H; Penning TM Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026 [TBL] [Abstract][Full Text] [Related]
7. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Woodyer R; van der Donk WA; Zhao H Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270 [TBL] [Abstract][Full Text] [Related]
8. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Hoelsch K; Sührer I; Heusel M; Weuster-Botz D Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502 [TBL] [Abstract][Full Text] [Related]
9. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant. Hurley JH; Chen R; Dean AM Biochemistry; 1996 May; 35(18):5670-8. PubMed ID: 8639526 [TBL] [Abstract][Full Text] [Related]
10. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922 [TBL] [Abstract][Full Text] [Related]
11. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. Schlieben NH; Niefind K; Müller J; Riebel B; Hummel W; Schomburg D J Mol Biol; 2005 Jun; 349(4):801-13. PubMed ID: 15896805 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic biofuel cells utilizing a biomimetic cofactor. Campbell E; Meredith M; Minteer SD; Banta S Chem Commun (Camb); 2012 Feb; 48(13):1898-900. PubMed ID: 22227738 [TBL] [Abstract][Full Text] [Related]
14. Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin. Sparla F; Fermani S; Falini G; Zaffagnini M; Ripamonti A; Sabatino P; Pupillo P; Trost P J Mol Biol; 2004 Jul; 340(5):1025-37. PubMed ID: 15236965 [TBL] [Abstract][Full Text] [Related]
15. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
16. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+. Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858 [TBL] [Abstract][Full Text] [Related]
17. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). Bubner P; Klimacek M; Nidetzky B FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142 [TBL] [Abstract][Full Text] [Related]
18. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019 [TBL] [Abstract][Full Text] [Related]
19. Structural biology of the aldo-keto reductase family of enzymes: catalysis and cofactor binding. Sanli G; Dudley JI; Blaber M Cell Biochem Biophys; 2003; 38(1):79-101. PubMed ID: 12663943 [TBL] [Abstract][Full Text] [Related]
20. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]