BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20632614)

  • 1. Comment on "Monte Carlo evaluations of the absorbed dose and quality dependence of Al2O3 in radiotherapy photon beams" [Med. Phys. 36, 4421-4424 (2009)].
    Snir JA; Van Dyk J; Yartsev S
    Med Phys; 2010 Jun; 37(6):3009-10. PubMed ID: 20632614
    [No Abstract]   [Full Text] [Related]  

  • 2. Monte Carlo evaluations of the absorbed dose and quality dependence of AL2O3 in radiotherapy photon beams.
    Chen SW; Wang XT; Chen LX; Tang Q; Liu XW
    Med Phys; 2009 Oct; 36(10):4421-4. PubMed ID: 19928072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Monte Carlo evaluations of the absorbed dose and quality dependence of Al2O3 in radiotherapy photon beams" [Med. Phys. 36(10), 4421-4424 (2009)].
    Kry SF; Olch A; Mohan R
    Med Phys; 2015 May; 42(5):2648-9. PubMed ID: 25979056
    [No Abstract]   [Full Text] [Related]  

  • 4. Response to "Comment on 'Monte Carlo evaluations of the absorbed dose and quality dependence of Al2O3 in radiotherapy photon beams' " [Med. Phys. 36, 4421-4424 (2009)].
    Chen S; Liu X
    Med Phys; 2015 May; 42(5):2650-2. PubMed ID: 25979057
    [No Abstract]   [Full Text] [Related]  

  • 5. Evaluations of absorbed dose ratio factor of Al2O3 dosemeter in radiotherapy photon beams using cavity theory.
    Zhu J; Chen S; Chen L; Liu X
    Radiat Prot Dosimetry; 2012 Dec; 152(4):393-9. PubMed ID: 22562942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams.
    Mobit P; Agyingi E; Sandison G
    Radiat Prot Dosimetry; 2006; 119(1-4):497-9. PubMed ID: 16735558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps.
    Ortega F; Marcazzó J; Molina P; Santiago M; Lester M; Henniger J; Caselli E
    Appl Radiat Isot; 2013 Aug; 78():33-7. PubMed ID: 23665765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the stem effect on radioluminescence signals from optical fibre Al2O3:C dosemeters.
    Marckmann CJ; Aznar MC; Andersen CE; Bøtter-Jensen L
    Radiat Prot Dosimetry; 2006; 119(1-4):363-7. PubMed ID: 16762967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Al2O3:C optically stimulated luminescence dosimeters for clinical radiation therapy applications.
    Hu B; Wang Y; Zealey W
    Australas Phys Eng Sci Med; 2009 Dec; 32(4):226-32. PubMed ID: 20169842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters.
    Edmund JM; Andersen CE; Marckmann CJ; Aznar MC; Akselrod MS; Bøtter-Jensen L
    Radiat Prot Dosimetry; 2006; 119(1-4):368-74. PubMed ID: 16990348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-trap competition model for TL in alpha-Al2O3:C heating stage.
    Kortov VS; Milman II; Moiseykin EV; Nikiforov SV; Ovchinnikov MM
    Radiat Prot Dosimetry; 2006; 119(1-4):41-4. PubMed ID: 16644999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy.
    Costa AM; Barbi GL; Bertucci EC; Ferreira H; Sansavino SZ; Colenci B; Caldas LV
    Appl Radiat Isot; 2010; 68(4-5):760-2. PubMed ID: 19819151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters.
    Santos JP; Fernandes AC; Gonçalves IC; Marques JG; Carvalho AF; Santos L; Cardoso J; Osvay M
    Radiat Prot Dosimetry; 2006; 120(1-4):358-60. PubMed ID: 16644959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescence-based retrospective dosimetry using Al2O3 from mobile phones: a simulation approach to determine the effects of position.
    Eakins JS; Kouroukla E
    J Radiol Prot; 2015 Jun; 35(2):343-81. PubMed ID: 25884152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of optically stimulated luminescence from AL2O3:C in the dosimetry of high-energy heavy charged particle fields.
    Gaza R; Yukihara EG; McKeever SW
    Radiat Prot Dosimetry; 2006; 120(1-4):354-7. PubMed ID: 16644985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.
    Sikora M; Dohm O; Alber M
    Phys Med Biol; 2007 Aug; 52(15):4449-63. PubMed ID: 17634643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically stimulated luminescence (OSL) of carbon-doped aluminum oxide (Al2O3:C) for film dosimetry in radiotherapy.
    Schembri V; Heijmen BJ
    Med Phys; 2007 Jun; 34(6):2113-8. PubMed ID: 17654914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Al2O3:C,Mg crystals for radiophotoluminescent dosimetry and optical imaging.
    Akselrod MS; Akselrod AE
    Radiat Prot Dosimetry; 2006; 119(1-4):218-21. PubMed ID: 16606658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.
    Carlsson Tedgren A; Elia R; Hedtjarn H; Olsson S; Alm Carlsson G
    Med Phys; 2012 Feb; 39(2):1133-40. PubMed ID: 22320824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovational radiation sensor by integrating AL2O3:C optically stimulated luminescent dosemeter and GaN detectors.
    Chen TC; Poochinda K; Stoebe TG
    Radiat Prot Dosimetry; 2006; 119(1-4):380-5. PubMed ID: 16731691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.