These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20632773)

  • 21. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047.
    Moreno J; Vargas MA; Madiedo JM; Muñoz J; Rivas J; Guerrero MG
    Biotechnol Bioeng; 2000 Feb; 67(3):283-90. PubMed ID: 10620258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2.
    Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME
    Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systematic and quantitative study of the link between foam slipping and interfacial viscoelasticity.
    Emile J; Salonen A; Dollet B; Saint-Jalmes A
    Langmuir; 2009 Dec; 25(23):13412-8. PubMed ID: 19746939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of the slow linear viscoelastic response of aqueous foams.
    Cohen-Addad S; Höhler R; Khidas Y
    Phys Rev Lett; 2004 Jul; 93(2):028302. PubMed ID: 15323957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.
    Lexis M; Willenbacher N
    Soft Matter; 2014 Dec; 10(48):9626-36. PubMed ID: 25363684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.
    Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG
    J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A note on the effects of liquid viscoelasticity and wall slip on foam drainage.
    Bertola V
    J Phys Condens Matter; 2007 Jun; 19(24):246105. PubMed ID: 21694041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of cationic polymers on foam rheological properties.
    Politova N; Tcholakova S; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2012 Jan; 28(2):1115-26. PubMed ID: 22168570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.
    Alzobaidi S; Da C; Tran V; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2017 Feb; 488():79-91. PubMed ID: 27821342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic properties of nanocrystalline films of semiconducting chalcogenides at liquid/liquid interface.
    Krishnaswamy R; Kalyanikutty KP; Biswas K; Sood AK; Rao CN
    Langmuir; 2009 Sep; 25(18):10954-61. PubMed ID: 19678615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time scales for drainage and imbibition in gellified foams: application to decontamination processes.
    Deleurence R; Saison T; Lequeux F; Monteux C
    Soft Matter; 2015 Sep; 11(35):7032-7. PubMed ID: 26246375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheology of viscoelastic mixed surfactant solutions: effect of scission on nonlinear flow and rheochaos.
    Pimenta P; Pashkovski EE
    Langmuir; 2006 Apr; 22(9):3980-7. PubMed ID: 16618136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bubble motion measurements during foam drainage and coarsening.
    Maurdev G; Saint-Jalmes A; Langevin D
    J Colloid Interface Sci; 2006 Aug; 300(2):735-43. PubMed ID: 16677666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear and non-linear wall friction of wet foams.
    Le Merrer M; Lespiat R; Höhler R; Cohen-Addad S
    Soft Matter; 2015 Jan; 11(2):368-81. PubMed ID: 25387164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic behavior of organic materials: consequences of a logarithmic dependence of force on strain rate.
    Jäger IL
    J Biomech; 2005 Jul; 38(7):1451-8. PubMed ID: 15922756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smectic foams.
    Trittel T; John T; Stannarius R
    Langmuir; 2010 Jun; 26(11):7899-904. PubMed ID: 20180603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foam drainage in the presence of nanoparticle-surfactant mixtures.
    Carn F; Colin A; Pitois O; Vignes-Adler M; Backov R
    Langmuir; 2009 Jul; 25(14):7847-56. PubMed ID: 19594176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.