BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20633146)

  • 1. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study of a TET System for Implantable Biomedical Devices.
    Dissanayake TD; Hu AP; Malpas S; Bennet L; Taberner A; Booth L; Budgett D
    IEEE Trans Biomed Circuits Syst; 2009 Dec; 3(6):370-8. PubMed ID: 23853284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 Jun; 20(6):621-4. PubMed ID: 8817967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an implantable motor-driven assist pump system.
    Mitamura Y; Okamoto E; Hirano A; Mikami T
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):146-56. PubMed ID: 2312139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Totally implantable intrathoracic ventricular assist device.
    Mussivand TV; Masters RG; Hendry PJ; Keon WJ
    Ann Thorac Surg; 1996 Jan; 61(1):444-7. PubMed ID: 8561623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous energy transfer system performance evaluation.
    Mussivand T; Miller JA; Santerre PJ; Belanger G; Rajagopalan KC; Hendry PJ; Masters RG; Holmes KS; Robichaud R; Keaney M
    Artif Organs; 1993 Nov; 17(11):940-7. PubMed ID: 8110063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Totally implantable robot to treat chronic atrial fibrillation.
    Tozzi P; Hayoz D; Thévenaz P; Roulet JY; Salchli F; von Segesser LK
    Bioinspir Biomim; 2008 Sep; 3(3):035009. PubMed ID: 18667758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transmission across intact skin for powering artificial internal organs.
    Sherman C; Clay W; Dasse K; Daly B
    Trans Am Soc Artif Intern Organs; 1981; 27():137-41. PubMed ID: 7331067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive component selection for TET powered medical devices.
    Leung HY; Budgett DM; Hu P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2913-6. PubMed ID: 22254950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.
    Ramrakhyani AK; Mirabbasi S; Mu Chiao
    IEEE Trans Biomed Circuits Syst; 2011 Feb; 5(1):48-63. PubMed ID: 23850978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-bundle concentric coil wirelessly transferring power to in vivo implantable devices.
    Amasha HM; Al-Nabulsi JI; Aloquili OM; Al-Naami BO
    J Med Eng Technol; 2011 Jan; 35(1):47-53. PubMed ID: 21142590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical-thermal characterization of cutaneous transilluminators.
    Pfefer TJ; Mehrabi A; James R; Landry R; Weininger S; Chang I; Kaufman D; Miller S
    Phys Med Biol; 2009 Nov; 54(22):6867-80. PubMed ID: 19864700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.