These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 20633153)
21. Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. Wadbua P; Promdonkoy B; Maensiri S; Siri S Int J Biol Macromol; 2010 Jun; 46(5):493-501. PubMed ID: 20338193 [TBL] [Abstract][Full Text] [Related]
22. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering]. Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722 [TBL] [Abstract][Full Text] [Related]
23. [Property studies on three-dimensional porous blended silk scaffolds]. Rao J; Shen J; Quan D; Xu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853 [TBL] [Abstract][Full Text] [Related]
24. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912 [TBL] [Abstract][Full Text] [Related]
26. Biodegradable materials based on silk fibroin and keratin. Vasconcelos A; Freddi G; Cavaco-Paulo A Biomacromolecules; 2009 Apr; 10(4):1019. PubMed ID: 19298078 [No Abstract] [Full Text] [Related]
27. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
28. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908 [TBL] [Abstract][Full Text] [Related]
29. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
30. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix. Zhang K; Qian Y; Wang H; Fan L; Huang C; Mo X J Biomater Sci Polym Ed; 2011; 22(8):1069-82. PubMed ID: 20615313 [TBL] [Abstract][Full Text] [Related]
31. Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. Yoo CR; Yeo IS; Park KE; Park JH; Lee SJ; Park WH; Min BM Int J Biol Macromol; 2008 May; 42(4):324-34. PubMed ID: 18243300 [TBL] [Abstract][Full Text] [Related]
32. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
33. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
34. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
35. Regenerated silk fibroin scaffold and infrapatellar adipose stromal vascular fraction as feeder-layer: a new product for cartilage advanced therapy. Chlapanidas T; Faragò S; Mingotto F; Crovato F; Tosca MC; Antonioli B; Bucco M; Lucconi G; Scalise A; Vigo D; Faustini M; Marazzi M; Torre ML Tissue Eng Part A; 2011 Jul; 17(13-14):1725-33. PubMed ID: 21338265 [TBL] [Abstract][Full Text] [Related]
36. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234 [TBL] [Abstract][Full Text] [Related]
38. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Liu H; Li X; Zhou G; Fan H; Fan Y Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391 [TBL] [Abstract][Full Text] [Related]
39. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J; Cao C; Ma X Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871 [TBL] [Abstract][Full Text] [Related]
40. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]