BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20633240)

  • 1. Metabolically engineered soybean seed with enhanced threonine levels: biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii.
    Qi Q; Huang J; Crowley J; Ruschke L; Goldman BS; Wen L; Rapp WD
    Plant Biotechnol J; 2011 Feb; 9(2):193-204. PubMed ID: 20633240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae.
    Arévalo-Rodríguez M; Calderón IL; Holmberg S
    Yeast; 1999 Sep; 15(13):1331-45. PubMed ID: 10509015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of mutated forms of aspartate kinase and cystathionine gamma-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine.
    Hacham Y; Matityahu I; Schuster G; Amir R
    Plant J; 2008 Apr; 54(2):260-71. PubMed ID: 18208521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Insight into concerted inhibition of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum.
    Yoshida A; Tomita T; Kurihara T; Fushinobu S; Kuzuyama T; Nishiyama M
    J Mol Biol; 2007 Apr; 368(2):521-36. PubMed ID: 17350037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase.
    Shaul O; Galili G
    Plant Mol Biol; 1993 Nov; 23(4):759-68. PubMed ID: 8251629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus.
    Yoshida A; Tomita T; Kono H; Fushinobu S; Kuzuyama T; Nishiyama M
    FEBS J; 2009 Jun; 276(11):3124-36. PubMed ID: 19490113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic canola and soybean seeds with increased lysine.
    Falco SC; Guida T; Locke M; Mauvais J; Sanders C; Ward RT; Webber P
    Biotechnology (N Y); 1995 Jun; 13(6):577-82. PubMed ID: 9634796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase.
    Brinch-Pedersen H; Galili G; Knudsen S; Holm PB
    Plant Mol Biol; 1996 Nov; 32(4):611-20. PubMed ID: 8980513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine.
    Song S; Hou W; Godo I; Wu C; Yu Y; Matityahu I; Hacham Y; Sun S; Han T; Amir R
    J Exp Bot; 2013 Apr; 64(7):1917-26. PubMed ID: 23530130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature-regulated way.
    Velasco I; Arévalo-Rodríguez M; Marina P; Calderón IL
    Yeast; 2005 Jan; 22(2):99-110. PubMed ID: 15645479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering and profiling of rice with increased lysine.
    Long X; Liu Q; Chan M; Wang Q; Sun SS
    Plant Biotechnol J; 2013 May; 11(4):490-501. PubMed ID: 23279104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspartate kinase 2. A candidate gene of a quantitative trait locus influencing free amino acid content in maize endosperm.
    Wang X; Stumpf DK; Larkins BA
    Plant Physiol; 2001 Apr; 125(4):1778-87. PubMed ID: 11299358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of feedback inhibition-insensitive aspartate kinase identified in a threonine-accumulating mutant of
    Isogai S; Nishimura A; Inoue A; Sonohara S; Tsugukuni T; Okada T; Takagi H
    Appl Environ Microbiol; 2024 Apr; 90(4):e0015524. PubMed ID: 38456673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the order of limitation of lysine, threonine, and valine, as determined by plasma urea nitrogen, in corn-soybean meal diets of lactating sows with high body weight loss.
    Soltwedel KT; Easter RA; Pettigrew JE
    J Anim Sci; 2006 Jul; 84(7):1734-41. PubMed ID: 16775057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis.
    Ben-Tzvi Tzchori I; Perl A; Galili G
    Plant Mol Biol; 1996 Nov; 32(4):727-34. PubMed ID: 8980524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents.
    Clark TJ; Lu Y
    Plant Physiol; 2015 Aug; 168(4):1512-26. PubMed ID: 26063505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced levels of free and protein-bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial feedback-insensitive aspartate kinase gene.
    Galili S; Guenoune D; Wininger S; Hana B; Schupper A; Ben-Dor B; Kapulnik Y
    Transgenic Res; 2000 Apr; 9(2):137-44. PubMed ID: 10951697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of monofunctional aspartate kinase genes in maize and their relationship with free amino acid content in the endosperm.
    Wang X; Lopez-Valenzuela JA; Gibbon BC; Gakiere B; Galili G; Larkins BA
    J Exp Bot; 2007; 58(10):2653-60. PubMed ID: 17545223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds.
    Zhu X; Galili G
    Plant Cell; 2003 Apr; 15(4):845-53. PubMed ID: 12671081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT.
    Kim YH; Lee YY; Kim YH; Choi MS; Jeong KH; Lee SK; Seo MJ; Yun HT; Lee CK; Kim WH; Lee SC; Park SK; Park HM
    J Agric Food Chem; 2011 Jan; 59(2):584-91. PubMed ID: 21175184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.