BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 20633657)

  • 1. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging.
    Chan KC; Li J; Kau P; Zhou IY; Cheung MM; Lau C; Yang J; So KF; Wu EX
    Neuroimage; 2011 Jan; 54(1):389-95. PubMed ID: 20633657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of retinotopic ordering of axons in the optic pathway to the formation of visual maps in central targets.
    Simon DK; O'Leary DD
    J Comp Neurol; 1991 May; 307(3):393-404. PubMed ID: 1856329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging.
    Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX
    Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging of the visual system in vivo: transsynaptic illumination of V1 and V2 visual cortex.
    Lindsey JD; Scadeng M; Dubowitz DJ; Crowston JG; Weinreb RN
    Neuroimage; 2007 Feb; 34(4):1619-26. PubMed ID: 17204432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section.
    Straznicky C; Tay D
    J Comp Neurol; 1982 Apr; 206(2):119-30. PubMed ID: 7085924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in the developing visual system: the effects of retinal lesions made in young rats.
    Lund RD; Lund JS
    J Comp Neurol; 1976 Sep; 169(2):133-54. PubMed ID: 61210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging of the mouse visual pathway for in vivo studies of degeneration and regeneration in the CNS.
    Haenold R; Herrmann KH; Schmidt S; Reichenbach JR; Schmidt KF; Löwel S; Witte OW; Weih F; Kretz A
    Neuroimage; 2012 Jan; 59(1):363-76. PubMed ID: 21835252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EphA5 and ephrin-A2 expression during optic nerve regeneration: a 'two-edged sword'.
    Symonds AC; King CE; Bartlett CA; Sauvé Y; Lund RD; Beazley LD; Dunlop SA; Rodger J
    Eur J Neurosci; 2007 Feb; 25(3):744-52. PubMed ID: 17328773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI of postnatal visual development in normal and hypoxic-ischemic-injured superior colliculi.
    Chan KC; Xing KK; Cheung MM; Zhou IY; Wu EX
    Neuroimage; 2010 Feb; 49(3):2013-20. PubMed ID: 19879366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern of retinotectal projection in the megachiropteran bat Rousettus aegyptiacus.
    Thiele A; Vogelsang M; Hoffmann KP
    J Comp Neurol; 1991 Dec; 314(4):671-83. PubMed ID: 1816270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral and electrophysiological effects of unilateral optic tract section in ordinary and Siamese cats.
    Antonini A; Berlucchi G; Marzi CA; Sprague JM
    J Comp Neurol; 1979 May; 185(1):183-202. PubMed ID: 429613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity.
    Finlay BL; Wilson KG; Schneider GE
    J Comp Neurol; 1979 Feb; 183(4):721-40. PubMed ID: 762269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity in the development of topographic order in the mammalian retinocollicular projection.
    Simon DK; Roskies AL; O'Leary DD
    Dev Biol; 1994 Apr; 162(2):384-93. PubMed ID: 8150202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey.
    Lui F; Gregory KM; Blanks RH; Giolli RA
    J Comp Neurol; 1995 Dec; 363(3):439-60. PubMed ID: 8847410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn(2+).
    Thuen M; Berry M; Pedersen TB; Goa PE; Summerfield M; Haraldseth O; Sandvig A; Brekken C
    J Magn Reson Imaging; 2008 Oct; 28(4):855-65. PubMed ID: 18821627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The retinal projection to the superior colliculus in the cat: a quantitative study with HRP.
    Wässle H; Illing RB
    J Comp Neurol; 1980 Mar; 190(2):333-56. PubMed ID: 7381061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of permeability of midtectal barriers in goldfish on compression of the visuotectal projection rostrally and regenerative escape caudally.
    Edwards MA; Jacobson M
    J Comp Neurol; 1984 Jun; 226(1):141-53. PubMed ID: 6736293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the retina and optic nerve in a rat model of chronic glaucoma using in vivo manganese-enhanced magnetic resonance imaging.
    Chan KC; Fu QL; Hui ES; So KF; Wu EX
    Neuroimage; 2008 Apr; 40(3):1166-74. PubMed ID: 18272401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental anatomical study on the topographic termination of the optic nerve fibers in the rat.
    Yamadori T
    J Hirnforsch; 1981; 22(3):313-26. PubMed ID: 7276544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo manganese-enhanced MRI and diffusion tensor imaging of developing and impaired visual brains.
    Chan KC; Cheng JS; Fan S; Zhou IY; Wu EX
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7005-8. PubMed ID: 22255951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.