These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 20633680)

  • 1. Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla.
    Apprich S; Welsch GH; Mamisch TC; Szomolanyi P; Mayerhoefer M; Pinker K; Trattnig S
    Osteoarthritis Cartilage; 2010 Sep; 18(9):1211-7. PubMed ID: 20633680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative T2 mapping of the patella at 3.0T is sensitive to early cartilage degeneration, but also to loading of the knee.
    Apprich S; Mamisch TC; Welsch GH; Stelzeneder D; Albers C; Totzke U; Trattnig S
    Eur J Radiol; 2012 Apr; 81(4):e438-43. PubMed ID: 21497472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading--initial results.
    Mamisch TC; Trattnig S; Quirbach S; Marlovits S; White LM; Welsch GH
    Radiology; 2010 Mar; 254(3):818-26. PubMed ID: 20123898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee.
    Soellner ST; Goldmann A; Muelheims D; Welsch GH; Pachowsky ML
    Osteoarthritis Cartilage; 2017 Nov; 25(11):1841-1849. PubMed ID: 28801212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.
    Hannila I; Nieminen MT; Rauvala E; Tervonen O; Ojala R
    Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the articular cartilage of the knee joint with vastly undersampled isotropic projection reconstruction steady-state free precession imaging.
    Kijowski R; Lu A; Block W; Grist T
    J Magn Reson Imaging; 2006 Jul; 24(1):168-75. PubMed ID: 16758476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of MRI T2 mapping sequence with knee pain location in young patients with normal standard MRI.
    Dautry R; Bousson V; Manelfe J; Perozziello A; Boyer P; Loriaut P; Koch P; Silvestre A; Schouman-Claeys E; Laredo JD; Dallaudière B
    JBR-BTR; 2014; 97(1):11-6. PubMed ID: 24765764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).
    Lee YH; Hahn S; Lim D; Suh JS
    Acta Radiol; 2017 Feb; 58(2):190-196. PubMed ID: 27207633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI T2 Mapping of Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.
    Mars M; Chelli M; Tbini Z; Ladeb F; Gharbi S
    Med Princ Pract; 2018; 27(5):443-450. PubMed ID: 29895028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients.
    Bredella MA; Tirman PF; Peterfy CG; Zarlingo M; Feller JF; Bost FW; Belzer JP; Wischer TK; Genant HK
    AJR Am J Roentgenol; 1999 Apr; 172(4):1073-80. PubMed ID: 10587150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue.
    Welsch GH; Mamisch TC; Marlovits S; Glaser C; Friedrich K; Hennig FF; Salomonowitz E; Trattnig S
    J Orthop Res; 2009 Jul; 27(7):957-63. PubMed ID: 19133648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: a comparison with conventional 3.0 T fast spin-echo T2 fat saturation image.
    Han CH; Park HJ; Lee SY; Chung EC; Choi SH; Yun JS; Rho MH
    Acta Radiol; 2015 Dec; 56(12):1479-86. PubMed ID: 25348476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences.
    Welsch GH; Zak L; Mamisch TC; Paul D; Lauer L; Mauerer A; Marlovits S; Trattnig S
    J Magn Reson Imaging; 2011 Jan; 33(1):180-8. PubMed ID: 21182137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy.
    Disler DG; McCauley TR; Wirth CR; Fuchs MD
    AJR Am J Roentgenol; 1995 Aug; 165(2):377-82. PubMed ID: 7618561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative MRI of Human Cartilage In Vivo: Relationships with Arthroscopic Indentation Stiffness and Defect Severity.
    Svärd T; Lakovaara M; Pakarinen H; Haapea M; Kiviranta I; Lammentausta E; Jurvelin J; Tervonen O; Ojala R; Nieminen M
    Cartilage; 2018 Jan; 9(1):46-54. PubMed ID: 29219019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage.
    Sasho T; Katsuragi J; Yamaguchi S; Haneishi H; Aizimu T; Tanaka T; Watanabe A; Sato Y; Akagi R; Matsumoto K; Uno T; Motoori K
    Clin Rheumatol; 2017 Sep; 36(9):2109-2119. PubMed ID: 28456927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T2 relaxation time mapping of proximal tibiofibular cartilage by 3-tesla magnetic resonance imaging.
    Kwack KS; Min BH; Cho JH; Kim JM; Yoon SH; Kim SY
    Acta Radiol; 2009 Nov; 50(9):1049-56. PubMed ID: 19863416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI.
    Lee SY; Jee WH; Kim SK; Koh IJ; Kim JM
    Acta Radiol; 2010 May; 51(4):455-61. PubMed ID: 20350249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.