BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20633683)

  • 1. Pretreatment of periosteum with TGF-beta1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits.
    Olivos-Meza A; Fitzsimmons JS; Casper ME; Chen Q; An KN; Ruesink TJ; O'Driscoll SW; Reinholz GG
    Osteoarthritis Cartilage; 2010 Sep; 18(9):1183-91. PubMed ID: 20633683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brief exposure to high-dose transforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: a preliminary report.
    Miura Y; Parvizi J; Fitzsimmons JS; O'Driscoll SW
    J Bone Joint Surg Am; 2002 May; 84(5):793-9. PubMed ID: 12004023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejuvenation of periosteal chondrogenesis using local growth factor injection.
    Reinholz GG; Fitzsimmons JS; Casper ME; Ruesink TJ; Chung HW; Schagemann JC; O'Driscoll SW
    Osteoarthritis Cartilage; 2009 Jun; 17(6):723-34. PubMed ID: 19064326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits.
    Gugjoo MB; Amarpal ; Abdelbaset-Ismail A; Aithal HP; Kinjavdekar P; Pawde AM; Kumar GS; Sharma GT
    Biomed Pharmacother; 2017 Sep; 93():1165-1174. PubMed ID: 28738525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering of cartilage using poly-epsilon-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells.
    Casper ME; Fitzsimmons JS; Stone JJ; Meza AO; Huang Y; Ruesink TJ; O'Driscoll SW; Reinholz GG
    Osteoarthritis Cartilage; 2010 Jul; 18(7):981-91. PubMed ID: 20434575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro.
    Fukumoto T; Sperling JW; Sanyal A; Fitzsimmons JS; Reinholz GG; Conover CA; O'Driscoll SW
    Osteoarthritis Cartilage; 2003 Jan; 11(1):55-64. PubMed ID: 12505488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis.
    Stevens MM; Marini RP; Martin I; Langer R; Prasad Shastri V
    J Orthop Res; 2004 Sep; 22(5):1114-9. PubMed ID: 15304287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of full-thickness cartilage defects in rabbit knees with free periosteal graft preincubated with transforming growth factor.
    Hsieh PC; Thanapipatsiri S; Anderson PC; Wang GJ; Balian G
    Orthopedics; 2003 Apr; 26(4):393-402. PubMed ID: 12722910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically Regulated Marrow Stimulation by Blocking TGF-β1 With Losartan Oral Administration Results in Hyaline-like Cartilage Repair: A Rabbit Osteochondral Defect Model.
    Utsunomiya H; Gao X; Deng Z; Cheng H; Nakama G; Scibetta AC; Ravuri SK; Goldman JL; Lowe WR; Rodkey WG; Alliston T; Philippon MJ; Huard J
    Am J Sports Med; 2020 Mar; 48(4):974-984. PubMed ID: 32027515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations.
    Kock LM; Ravetto A; van Donkelaar CC; Foolen J; Emans PJ; Ito K
    Osteoarthritis Cartilage; 2010 Nov; 18(11):1528-35. PubMed ID: 20833251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of transforming growth factor beta1 on mesenchymal cell repair of full-thickness cartilage defects.
    Perka C; Schultz O; Spitzer RS; Lindenhayn K
    J Biomed Mater Res; 2000 Dec; 52(3):543-52. PubMed ID: 11007623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure.
    Chen T; Bai J; Tian J; Huang P; Zheng H; Wang J
    Colloids Surf B Biointerfaces; 2018 Jul; 167():354-363. PubMed ID: 29689491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Integration of periosteum covered autogenous bone grafts with and without autologous chondrocytes. An animal experiment using the Göttinger minipig].
    Gotterbarm T; Reitzel T; Schneider U; Voss HJ; Stofft E; Breusch SJ
    Orthopade; 2003 Jan; 32(1):65-73. PubMed ID: 12557088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerated cartilage produced by autogenous periosteal grafts: a histologic and mechanical study in rabbits under the influence of continuous passive motion.
    Martin-Hernandez C; Cebamanos-Celma J; Molina-Ros A; Ballester-Jimenez JJ; Ballester-Soleda J
    Arthroscopy; 2010 Jan; 26(1):76-83. PubMed ID: 20117630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits.
    Mrosek EH; Schagemann JC; Chung HW; Fitzsimmons JS; Yaszemski MJ; Mardones RM; O'Driscoll SW; Reinholz GG
    J Orthop Res; 2010 Feb; 28(2):141-8. PubMed ID: 19743507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair.
    Miller RE; Grodzinsky AJ; Vanderploeg EJ; Lee C; Ferris DJ; Barrett MF; Kisiday JD; Frisbie DD
    Osteoarthritis Cartilage; 2010 Dec; 18(12):1608-19. PubMed ID: 20851201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-beta1 modulates insulin-like growth factor binding protein-4 expression and proteolysis in cultured periosteal explants.
    Gonzalez C; Auw Yang KG; Schwab JH; Fitzsimmons JS; Reinholz MM; Resch ZT; Bale LK; Clemens VR; Conover CA; O'Driscoll SW; Reinholz GG
    Growth Horm IGF Res; 2010 Apr; 20(2):81-6. PubMed ID: 19656700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.
    Wakitani S; Goto T; Pineda SJ; Young RG; Mansour JM; Caplan AI; Goldberg VM
    J Bone Joint Surg Am; 1994 Apr; 76(4):579-92. PubMed ID: 8150826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.
    Mendes LF; Katagiri H; Tam WL; Chai YC; Geris L; Roberts SJ; Luyten FP
    Stem Cell Res Ther; 2018 Feb; 9(1):42. PubMed ID: 29467016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.