These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 20633920)
1. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Wang S; Zheng G; Zhou L Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor. Fang D; Zhou LX Chemosphere; 2007 Sep; 69(2):303-10. PubMed ID: 17537479 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content. Huo M; Zheng G; Zhou L Bioresour Technol; 2014 Sep; 168():190-7. PubMed ID: 24650613 [TBL] [Abstract][Full Text] [Related]
4. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching. Wong JWC; Zhou J; Kurade MB; Murugesan K Bioresour Technol; 2015 Mar; 179():78-83. PubMed ID: 25528607 [TBL] [Abstract][Full Text] [Related]
5. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching. Zheng G; Zhou L Water Res; 2011 Oct; 45(16):5295-301. PubMed ID: 21864881 [TBL] [Abstract][Full Text] [Related]
6. [Isolation of heterotrophic microorganism and its role in bioleaching of heavy metals from tannery sludge]. Wang SM; Zhou LX; Huang FY; Fang D Huan Jing Ke Xue; 2004 Sep; 25(5):153-7. PubMed ID: 15623044 [TBL] [Abstract][Full Text] [Related]
7. Extracellular polymeric substances and bound water drastically affect bioleached sludge dewaterability at low temperature. Song Y; Zheng G; Huo M; Zhao B; Zhou L Environ Technol; 2014; 35(17-20):2538-45. PubMed ID: 25145209 [TBL] [Abstract][Full Text] [Related]
8. An acid-tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multibatch reaction systems. Zheng G; Zhou L; Wang S Environ Sci Technol; 2009 Jun; 43(11):4151-6. PubMed ID: 19569344 [TBL] [Abstract][Full Text] [Related]
9. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185 [TBL] [Abstract][Full Text] [Related]
10. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Wang J; Bai J; Xu J; Liang B J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031 [TBL] [Abstract][Full Text] [Related]
11. Co-inoculation with beneficial microorganisms enhances tannery sludge bioleaching with Acidithiobacillus thiooxidans. Yao J; Wang M; Wang L; Gou M; Zeng J; Tang YQ Environ Sci Pollut Res Int; 2022 Jul; 29(32):48509-48521. PubMed ID: 35192165 [TBL] [Abstract][Full Text] [Related]
12. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge. Zhou LX; Fang D; Wang SM; Wong JW; Wang DZ Environ Technol; 2005 Mar; 26(3):277-84. PubMed ID: 15881024 [TBL] [Abstract][Full Text] [Related]
13. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
14. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
15. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching. Zhou J; Zheng G; Zhang X; Zhou L PLoS One; 2014; 9(7):e102688. PubMed ID: 25050971 [TBL] [Abstract][Full Text] [Related]
16. [Adsorption and coprecipitation of dissolved metals with jarosite under conditions simulating sewage sludge bioleaching]. Zhou SG; Zhou LX Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):966-70. PubMed ID: 16883881 [TBL] [Abstract][Full Text] [Related]
17. Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching. Zhou J; Zheng G; Wong JW; Zhou L Bioresour Technol; 2013 Mar; 132():217-23. PubMed ID: 23411451 [TBL] [Abstract][Full Text] [Related]
18. Enhanced heavy metal bioleaching efficiencies from anaerobically digested sewage sludge with coinoculation of Acidithiobacillus ferrooxidans ANYL-1 and Blastoschizomyces capitatus Y5. Wong JW; Gu XY Water Sci Technol; 2004; 50(9):83-9. PubMed ID: 15580998 [TBL] [Abstract][Full Text] [Related]
19. Occurrence, source, and fate of dissolved organic matter (DOM) in a pilot-scale membrane bioreactor. Meng F; Drews A; Mehrez R; Iversen V; Ernst M; Yang F; Jekel M; Kraume M Environ Sci Technol; 2009 Dec; 43(23):8821-6. PubMed ID: 19943652 [TBL] [Abstract][Full Text] [Related]
20. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Bayat O; Sever E; Bayat B; Arslan V; Poole C Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]