These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 20633922)
41. Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives. Leduc F; Whalen JK; Sunahara GI Ecotoxicol Environ Saf; 2008 Feb; 69(2):219-26. PubMed ID: 17559932 [TBL] [Abstract][Full Text] [Related]
42. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils. Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195 [TBL] [Abstract][Full Text] [Related]
43. DNA damage in earthworms from highly contaminated soils: assessing resistance to arsenic toxicity by use of the Comet assay. Button M; Jenkin GR; Bowman KJ; Harrington CF; Brewer TS; Jones GD; Watts MJ Mutat Res; 2010 Feb; 696(2):95-100. PubMed ID: 20015476 [TBL] [Abstract][Full Text] [Related]
44. In vitro estimates of bioaccessible nickel in field-contaminated soils, and comparison with in vivo measurement of bioavailability and identification of mineralogy. Vasiluk L; Dutton MD; Hale B Sci Total Environ; 2011 Jun; 409(14):2700-6. PubMed ID: 21531008 [TBL] [Abstract][Full Text] [Related]
45. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Jalali M; Khanlari ZV Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454 [TBL] [Abstract][Full Text] [Related]
46. Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure. Lukkari T; Taavitsainen M; Soimasuo M; Oikari A; Haimi J Environ Pollut; 2004 Jun; 129(3):377-86. PubMed ID: 15016459 [TBL] [Abstract][Full Text] [Related]
47. A review of studies performed to assess metal uptake by earthworms. Nahmani J; Hodson ME; Black S Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606 [TBL] [Abstract][Full Text] [Related]
48. Bioavailability and toxicity of pentachlorophenol in contaminated soil evaluated on coelomocytes of Eisenia andrei (Annelida: Lumbricidae). Vernile P; Fornelli F; Bari G; Spagnuolo M; Minervini F; de Lillo E; Ruggiero P Toxicol In Vitro; 2007 Mar; 21(2):302-7. PubMed ID: 17142006 [TBL] [Abstract][Full Text] [Related]
49. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Grumiaux F; Demuynck S; Schikorski D; Lemière S; Leprêtre A Chemosphere; 2010 Mar; 79(2):156-61. PubMed ID: 20129643 [TBL] [Abstract][Full Text] [Related]
50. A new and sensitive method for measuring in vivo and in vitro cytotoxicity in earthworm coelomocytes by flow cytometry. Kwak JI; Kim SW; An YJ Environ Res; 2014 Oct; 134():118-26. PubMed ID: 25127522 [TBL] [Abstract][Full Text] [Related]
51. Effects, transfer, and fate of RDX from aged soil in plants and worms. Best EP; Geter KN; Tatem HE; Lane BK Chemosphere; 2006 Jan; 62(4):616-25. PubMed ID: 16045966 [TBL] [Abstract][Full Text] [Related]
52. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
53. Assessing nickel bioavailability in smelter-contaminated soils. Everhart JL; McNear D; Peltier E; van der Lelie D; Chaney RL; Sparks DL Sci Total Environ; 2006 Aug; 367(2-3):732-44. PubMed ID: 16499951 [TBL] [Abstract][Full Text] [Related]
54. The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Fourie F; Reinecke SA; Reinecke AJ Ecotoxicol Environ Saf; 2007 Jul; 67(3):361-8. PubMed ID: 17173970 [TBL] [Abstract][Full Text] [Related]
55. Arsenic resistance and cycling in earthworms residing at a former gold mine in Canada. Button M; Koch I; Reimer KJ Environ Pollut; 2012 Oct; 169():74-80. PubMed ID: 22683483 [TBL] [Abstract][Full Text] [Related]
56. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Lachance B; Renoux AY; Sarrazin M; Hawari J; Sunahara GI Chemosphere; 2004 Jun; 55(10):1339-48. PubMed ID: 15081777 [TBL] [Abstract][Full Text] [Related]
57. Metallothionein 2 and Heat Shock Protein 72 Protect Allolobophora chlorotica from Cadmium But Not Nickel or Copper Exposure: Body Malformation and Coelomocyte Functioning. Homa J; Stürzenbaum SR; Kolaczkowska E Arch Environ Contam Toxicol; 2016 Aug; 71(2):267-77. PubMed ID: 27038635 [TBL] [Abstract][Full Text] [Related]
58. Cu-Cd interactions in earthworms maintained in laboratory microcosms: the examination of a putative copper paradox. Mariño F; Stürzenbaum SR; Kille P; Morgan AJ Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Aug; 120(2):217-23. PubMed ID: 9827035 [TBL] [Abstract][Full Text] [Related]
59. Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils. Berthelot Y; Valton E; Auroy A; Trottier B; Robidoux PY Chemosphere; 2008 Dec; 74(1):166-77. PubMed ID: 18829064 [TBL] [Abstract][Full Text] [Related]
60. Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Jager T; van der Wal L; Fleuren RH; Barendregt A; Hermens JL Environ Sci Technol; 2005 Jan; 39(1):293-8. PubMed ID: 15667108 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]