BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20633952)

  • 1. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems.
    Ayvaz MT
    J Contam Hydrol; 2010 Sep; 117(1-4):46-59. PubMed ID: 20633952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An almost-parameter-free harmony search algorithm for groundwater pollution source identification.
    Jiang S; Zhang Y; Wang P; Zheng M
    Water Sci Technol; 2013; 68(11):2359-66. PubMed ID: 24334883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.
    Bashi-Azghadi SN; Kerachian R
    Sci Total Environ; 2010 Apr; 408(10):2189-98. PubMed ID: 20189633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.
    Elçi A; Karadaş D; Fistikoğlu O
    Water Sci Technol; 2010; 62(1):180-8. PubMed ID: 20595769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An assembly model for simulation of large-scale ground water flow and transport.
    Huang J; Christ JA; Goltz MN
    Ground Water; 2008; 46(6):882-92. PubMed ID: 18715260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust approach for iterative contaminant source location and release history recovery.
    Sun AY; Painter SL; Wittmeyer GW
    J Contam Hydrol; 2006 Dec; 88(3-4):181-96. PubMed ID: 16889871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of simulation model solver performance on ground water management problems.
    Ahlfeld DP; Hoque Y
    Ground Water; 2008; 46(5):716-26. PubMed ID: 18522654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a general framework for pollution source identification in surface water resources (theory and application).
    Amiri S; Mazaheri M; Mohammad Vali Samani J
    J Environ Manage; 2019 Oct; 248():109281. PubMed ID: 31351407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland.
    Shen J; Jia JJ; Sisson GM
    Water Res; 2006 Oct; 40(18):3333-42. PubMed ID: 16978682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm.
    Cho JH; Ha SR
    Sci Total Environ; 2010 Mar; 408(8):1985-91. PubMed ID: 20163823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation supported scenario analysis for water resources planning: a case study in northern Italy.
    Facchi A; Gandolfi C; Ortuani B; Maggi D
    Water Sci Technol; 2005; 51(3-4):11-8. PubMed ID: 15850169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of clandestine groundwater pollution sources using heuristics optimization algorithms: a comparison between simulated annealing and particle swarm optimization.
    Chakraborty A; Prakash O
    Environ Monit Assess; 2020 Nov; 192(12):791. PubMed ID: 33242155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites.
    Qin XS; Huang GH; Chakma A; Chen B; Zeng GM
    Sci Total Environ; 2007 Aug; 381(1-3):17-37. PubMed ID: 17509664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piecewise-continuous boundaries using the MODFLOW FHB and MT3DMS HSS packages.
    Tonkin M; Tajani Z
    Ground Water; 2012; 50(2):296-300. PubMed ID: 21410698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous identification of groundwater contaminant source and hydraulic parameters based on multilayer perceptron and flying foxes optimization.
    Li Y; Lu W; Pan Z; Wang Z; Dong G
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78933-78947. PubMed ID: 37277589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.
    Leone A; Ripa MN; Uricchio V; Deák J; Vargay Z
    J Environ Manage; 2009 Jul; 90(10):2969-78. PubMed ID: 18054423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating groundwater-surface water interaction into river management models.
    Valerio A; Rajaram H; Zagona E
    Ground Water; 2010; 48(5):661-73. PubMed ID: 20412319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of point-non-point source effluent trading in Taihu Lake area: perspective of non-point sources control in China.
    Wang X; Zhang W; Huang Y; Li S
    Sci Total Environ; 2004 Jun; 325(1-3):39-50. PubMed ID: 15144776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulation-based interval two-stage stochastic model for agricultural non-point source pollution control through land retirement.
    Luo B; Li JB; Huang GH; Li HL
    Sci Total Environ; 2006 May; 361(1-3):38-56. PubMed ID: 16242757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.