BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20634061)

  • 1. Biochar from anaerobically digested sugarcane bagasse.
    Inyang M; Gao B; Pullammanappallil P; Ding W; Zimmerman AR
    Bioresour Technol; 2010 Nov; 101(22):8868-72. PubMed ID: 20634061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil.
    Kameyama K; Miyamoto T; Shiono T; Shinogi Y
    J Environ Qual; 2012; 41(4):1131-7. PubMed ID: 22751055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.
    Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S
    Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse.
    Fu Z; Holtzapple MT
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1669-79. PubMed ID: 21365471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of an Automatic Methane Potential Test System for evaluating the biomethane potential of sugarcane bagasse after different treatments.
    Badshah M; Lam DM; Liu J; Mattiasson B
    Bioresour Technol; 2012 Jun; 114():262-9. PubMed ID: 22446055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar.
    Hossain MK; Strezov V; Chan KY; Ziolkowski A; Nelson PF
    J Environ Manage; 2011 Jan; 92(1):223-8. PubMed ID: 20870338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.
    Gonçalves MM; de Oliveira Mello LA; da Costa AC
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):97-105. PubMed ID: 18401756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biostimulation of micro-organisms from sugarcane bagasse pith for the removal of weathered hydrocarbon from soil.
    Pèrez-Armendáriz B; Loera-Corral O; Fernández-Linares L; Esparza-García F; Rodríguez-Vázquez R
    Lett Appl Microbiol; 2004; 38(5):373-7. PubMed ID: 15059206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential.
    Yao Y; Gao B; Inyang M; Zimmerman AR; Cao X; Pullammanappallil P; Yang L
    Bioresour Technol; 2011 May; 102(10):6273-8. PubMed ID: 21450461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the application of sugarcane bagasse on lindane (gamma-HCH) mobility through soil column: implication for biotreatment.
    Abhilash PC; Singh N
    Bioresour Technol; 2008 Dec; 99(18):8961-6. PubMed ID: 18562197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic mixed-culture fermentation of aqueous ammonia-treated sugarcane bagasse in consolidated bioprocessing.
    Fu Z; Holtzapple MT
    Biotechnol Bioeng; 2010 Jun; 106(2):216-27. PubMed ID: 20091732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated energy production and reduction of the environmental impact at alcohol distillery plants.
    van Haandel AC
    Water Sci Technol; 2005; 52(1-2):49-57. PubMed ID: 16180408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of biochars produced from cornstovers for soil amendment.
    Lee JW; Kidder M; Evans BR; Paik S; Buchanan AC; Garten CT; Brown RC
    Environ Sci Technol; 2010 Oct; 44(20):7970-4. PubMed ID: 20836548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis.
    Chen WH; Hsu HJ; Kumar G; Budzianowski WM; Ong HC
    Bioresour Technol; 2017 Dec; 246():12-19. PubMed ID: 28803060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse.
    Geddes CC; Peterson JJ; Mullinnix MT; Svoronos SA; Shanmugam KT; Ingram LO
    Bioresour Technol; 2010 Dec; 101(23):9128-36. PubMed ID: 20678927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.
    Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR
    Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin.
    de Castro AM; Pedro KC; da Cruz JC; Ferreira MC; Leite SG; Pereira N
    Appl Biochem Biotechnol; 2010 Nov; 162(7):2111-22. PubMed ID: 20455032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.